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Abstract

The farthest line segment Voronoi diagram shows
properties different from both the closest-segment
Voronoi diagram and the farthest-point Voronoi diagram.
Surprisingly, this structure did not receive attention in
the computational geometry literature. We analyze its
combinatorial and topological properties and outline an
O(n log n) time construction algorithm that is easy to im-
plement. No restrictions are placed upon the n input line
segments; they are allowed to touch or cross.
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farthest line segment; optimal algorithm.

1 Introduction

Consider a set S of n simple geometric objects (called
sites) in the plane, for example points, line segments, or
circular arcs. The closest-site Voronoi diagram of S sub-
divides the plane into regions, each region being asso-
ciated with some site si ∈ S, and containing all points
of the plane for which si is closest among all the sites
in S. Voronoi diagrams and their numerous variants have
proven extremely useful in the algorithmic and combi-
natorial analysis of geometric problems, and are a well-
established tool in computational geometry [2, 4, 17].

It is commonly agreed that many geometric scenarios
can be modeled with sufficient accuracy by polygonal ob-
jects. In this sense, the Voronoi diagram for line seg-
ment sites is of particular importance. Indeed, this type is
among the first generalizations of the standard point-site
Voronoi diagram to have been considered [12, 14, 9, 19],
and several practical and efficient construction algorithms
have been developed; see [10, 11] and references therein.

Along with the study of closest-site Voronoi diagrams
go their farthest-site counterparts. In that model, each site
si ∈ S gets allotted the region of all points in the plane
for which si is the farthest site (rather than the closest)
in S. While geometric properties mainly stay unaffected
by this modification, the combinatorial size of the diagram
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Figure 1: Farthest-segment Voronoi diagram

may change drastically in the worst case. For instance,
this happens for Voronoi diagrams under the Manhattan
metric [15] (from Θ(n) to O(1)), and for multiplicatively
weighted Voronoi diagrams [3, 13] (from Θ(n2) to Θ(n)).

Interestingly, and surprising to the authors, the farthest
line segment Voronoi diagram, which is the topic of the
present note, has been treated as a stepchild in the vast
Voronoi diagram literature. As part of a study of 2-site
Voronoi diagrams [5], this type has been considered for
all

(

n
2

)

line segments determined by n points in the plane.
Very recently, a divide-and-conquer algorithm for the case
where the input line segments form a convex polygon has
been given in [7]. However, nothing has been published
about the farthest line segment Voronoi diagram in its gen-
eral setting.

Still, the properties of this diagram deviate from the ob-
vious. For example, regions may be disconnected, and
region emptiness cannot be characterized by convex hull
properties. Moreover, and unlike the closest line segment
case, the number of edges and vertices of the diagram re-
mains Θ(n) in the worst case, regardless of the crossing
properties of the input segments. (It is well known that
each crossing constitutes a vertex in the closest-segment
diagram.) We give a structural analysis of the farthest line
segment Voronoi diagram, and outline an O(n log n) con-
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struction algorithm that is implementable using basic data
structures.

Among its potential applications are computing the
smallest disk that contacts all the given segments, and find-
ing the largest gap to be bridged between any two seg-
ments. This information can be derived from the diagram
without asymptotic increase of runtime. As another ex-
ample, we may wish to preprocess a set S of n points
so that, given a query point q, one can quickly report a
line segment spanned by S and being farthest from q. The
Voronoi diagram data structure in [6], together with the
approach in [16], implies O(n log n) preprocessing time
and O(log n) query time.

2 Structural properties

Let S = {s1, . . . , sn} be an arbitrary set of line seg-
ments in the Euclidean plane

�
2. Line segments in S

are allowed to cross or may touch at single points.
The distance d(x, si) of a point x ∈

�
2 to a line seg-

ment si ∈ S is measured to the closest point on si. That
is, d(x, si) = min{δ(x, p) | p ∈ si}, where δ denotes the
Euclidean distance function. The region of a line seg-
ment si is defined as

reg(si) = {x ∈
�

2 | d(x, si) ≥ d(x, sj), 1 ≤ j ≤ n}.

The regions of all the segments in S, together with their
bounding edges and vertices, define a partition of

�
2

which is called the farthest-segment Voronoi diagram of S,
or FV (S) for short. Figure 1 displays this diagram for six
line segments. Encirculated numbers indicate affiliation of
regions to segments.

For any two distinct segments si and sj , their re-
gions reg(si) and reg(sj) are separated by their bisec-
tor sep(si, sj), which is the locus of all points x ∈

�
2

equidistant from si and sj . It is well known [14, 11]
that sep(si, sj) is composed of constantly many pieces of
straight lines and parabolas. If si and sj are disjoint then
sep(si, sj) is an unbounded and connected curve. Two
such curves, intersecting at point p, make up the bisec-
tor if si and sj cross properly at p. Finally, if si and sj

have a common endpoint then sep(si, sj) contains a two-
dimensional portion. This portion is, by convention, re-
placed by the piece of the angle bisector of si and sj that
it includes, and a single separating curve is obtained. Note
that the O(1) points delimiting the individual pieces of
sep(si, sj) will not be considered vertices of FV (S) in
the present paper.

Define a face of FV (S) as a maximal interior-
connected subset of a region of FV (S). As for the stan-
dard case of point sites, we have the following property.

Lemma 1 All faces of FV (S) are unbounded.

Proof. For x ∈
�

2 and si ∈ S, let p be the point on si

closest to x. Then x ∈ reg(si) holds if and only if the
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Figure 2: Directions where segment s1 is active

closed disk D(x) with center x and p on its boundary in-
tersects all the segments in S \ {si}. Let R be the ray
starting at x and directed away from p. For all y ∈ R,
we have D(y) ⊃ D(x). Thus R ⊂ reg(si) follows from
x ∈ reg(si). This implies that reg(si) is either empty or
all its faces are unbounded. �

Corollary 2 The interior of reg(si) is non-empty (and is
unbounded in direction ϕ) if and only if there exists an
open halfplane (normal to ϕ) which intersects all segments
in S but si.

Corollary 2 shows that emptiness of regions is not re-
flected by the extremal properties of the set S. For in-
stance, both endpoints of segment s2 in Figure 1 are ex-
tremal but reg(s2) is empty. On the other hand, seg-
ment s4 avoids the boundary of the convex hull of S but
still gives rise to a non-empty region. Observe that reg(s4)
is disconnected and breaks into two faces.

Let us describe an example where the region of an indi-
vidual segment consists of Θ(n) faces. See Figure 2. Seg-
ment s1 degenerates to a point, and segments s2, . . . , sn

are arranged around s1 in a cyclic fashion. Now let a
directed line g through s1 rotate, and consider the open
halfplane H to the left of g. Whenever g points at some
direction not emphasized in bold, H intersects all seg-
ments except s1. (Otherwise, H avoids another segment
beside s1.) Thus, by Corollary 2, reg(s1) is unbounded in
the corresponding normal directions. On the other hand,
for points x being sufficiently close to s1 in any of these
normal directions, s1 will no longer be the segment in S

farthest from x. We conclude that reg(s1) splits into n−1
faces, one for each interval of directions.

This property of reg(s1) can be maintained while
untangling the crossings between segments: For
i = 3, . . . , n, we translate the segment si towards s1

and shorten it so that it still spans the same angle as seen
from s1, until si does not intersect any of the segments
s2, . . . , si−1.

The proof of the following assertion is postponed to
Section 3. It holds for arbitrary (possibly non-disjoint)
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segments, and should be seen in contrast to the Θ(n2)
worst-case size of the closest-segment Voronoi diagram
where segment crossings necessarily give rise to diagram
vertices.

Theorem 3 Let S be a set of n line segments in the plane.
FV (S) contains O(n) faces, edges, and vertices.

Another property distinguishes FV (S) from its closest-
segment counterpart.

Lemma 4 The graph formed by the edges of FV (S) is
connected (and thus, by Lemma 1, is a tree).

Proof. Assume, without loss of generality, that no region
in FV (S) (and thus in FV (S ′), for any S′ ⊂ S) is empty.
For 1 ≤ i ≤ n, we let Gi denote the graph formed by
the edges of FV ({s1, . . . , si}). If all n segments pass
through a common point p then Gn is obviously connected
through p. Otherwise, we prove connectedness of Gn by
induction on n, as follows.

The base cases G1 = ∅ and G2 = sep(s1, s2) are valid,
so let us assume that Gn−1 is connected, too. Let f be
some face of reg(sn). We show that f has at least one
vertex. This implies the lemma, because the parts of Gn−1

that get disconnected when deleting edges in the interior
of f will be re-connected in Gn with edges of f .

Face f having a boundary part but no vertex in com-
mon with some region reg(si) implies that the entire bi-
sector sep(sn, si) must belong to the boundary of f . This
is equivalent to claiming that every closed disk D centered
on sep(sn, si) and touching sn and si must intersect the
interiors of all the other segments. We disprove this claim
by considering some segment sk, k 6= n, i, that does not
pass through the intersection point (if any) of sn and si.
By the assumptions made above, such a segment exists and
we have reg(sk) 6= ∅. So there exists some closed disk D

that touches sk at a point p and intersects all the other seg-
ments. Shrink D by moving its center directly towards p

until D touches at least one of sn and si, say sn, at a sin-
gle point q. This will happen because not both sn and si

can pass through p. If D still intersects the interior of si,
then continue shrinking D by moving its center directly
towards q, until this intersection is lost. Beside si, disk D

now still touches sn (at q), so its center is on sep(sn, si).
However, D avoids the interior of sk (and possibly other
segments as well). This completes the proof. �

By the arguments in the proof above, no intersection
point between segments arises as a vertex of FV (S), un-
less all segments pass through a common point. Observe
also that the unbounded edges of FV (S) (the leaves of the
tree Gn) become straight rays rather than parabolic curves
at places sufficiently remote from the convex hull of S,
where they are defined by perpendicular bisectors of seg-
ment endpoints.

Finally, let us make an observation on the following
(simpler) variant of FV (S). When the distance to each

p

E

r

Figure 3: Dual wedges and their union

segment si ∈ S is measured to the farthest (instead of
the closest) point on si, then this distance is always re-
alized at one of the two endpoints of si. The resulting
farthest-segment Voronoi diagram is identical to the well-
investigated farthest-point Voronoi diagram of the segment
endpoints. Each segment owns at most two, possibly non-
adjacent, faces of the diagram.

3 Dual setting

It is easier to study certain combinatorial and algorith-
mic properties of FV (S) in a dual setting. Without
loss of generality, let no line segment in S be verti-
cal. We apply a standard point-line duality, T , which
transforms a point p =

(

a
b

)

∈
�

2 into the (non-vertical)
line T (p) : y = ax − b, and vice versa.

For our purposes, we send a segment si = uv into
the wedge Wi that lies below both lines T (u) and T (v).
A non-vertical halfplane H , bounded from below by the
line g, is sent into the vertical ray r(H) that emanates
from T (g) and is directed to −∞. Simple analytic cal-
culations show that si ⊂ H is equivalent to Wi ⊃ r(H).

Define E to be the boundary of the union of the
wedges W1, . . . , Wn (consult Figure 3). Consider some
point p ∈ E such that there is a unique wedge Wi whose
boundary contains p. Then the vertical ray r below p

transforms to an open halfplane H which intersects all
segments in S but si. By Corollary 2, this means that
reg(si) is unbounded in the direction with slope equal to
the x-coordinate of r. We conclude that the edges of E

(in x-order) correspond to the faces of FV (S) (in cyclic
order) which are unbounded in directions 0 to π.

As a consequence, the number of faces of FV (S) is at
most two times the maximal number of edges that can ap-
pear on E. The latter number, in turn, can be bounded by
4n+2. By construction, each wedge Wi contains the verti-
cal ray below its apex, which enables us to apply the result
in [8] on the complexity of the union of such wedges. This
finally provides a proof for Theorem 3, because FV (S)
can be interpreted as a planar graph with O(n) faces and
vertex degree at least three.
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Though clearly being asymptotically optimal, the ob-
tained upper bound 8n + 4 on the number of faces
of FV (S) is not considered the tightest possible. A lower
bound of 4n−4 can be shown by an example. Namely, for
1 ≤ i ≤ n, let the segment si have endpoints pi and −pi,
where pi =

(

i2

i3

)

. Using a similar rotation argument as in
Section 2, we get that each region reg(si), for i 6= 1, con-
sists of exactly two faces, whereas the number of faces
of reg(s1) is 2n − 2. These numbers do not change when
the segments are moved slightly so that no three of them
pass through a common point.

Let us remark that the boundaries of the wedges Wi

are x-monotone unbounded Jordan curves which pair-
wise cross at most three times. Thus, from the theory of
Davenport-Schinzel sequences [18], we get the (weaker)
bound λ3(n) = O(n log n) for the complexity of E, the
upper envelope of these curves.

4 Construction algorithm

Our algorithm for computing FV (S) proceeds in two
steps: Finding all unbounded edges of FV (S) in cyclical
order and, starting from there, intersecting bisectors in an
appropriate order to construct the diagram edge by edge.

By the results in Section 3, the former step is equi-
valent to constructing the boundary of the union of the
dual wedges W1, . . . , Wn. (To be precise, this task has
to be carried out twice, the second time after having ro-
tated the input set S by an angle of π.) Standard tech-
niques, namely, divide-and-conquer paired with a plane-
sweep method for merging the boundaries of the union of
two subsets of wedges, are applied. In fact, after having
transformed S into W1, . . . , Wn in time O(n), this step
basically mimics Mergesort for the x-values of the bound-
ary vertices. In the merge phase, we may have to con-
struct new vertices and delete old ones, on account of their
y-values checked during the plane sweep. The running
time is O(n log n).

To get the intuition for step two, let us resort to a three-
dimensional interpretation of FV (S). For each index i,
1 ≤ i ≤ n, we view the distance d(x, si) as a (convex)
function z = fi(x) over

�
2. Then FV (S), being de-

fined by distances to farthest segments, corresponds to the
pointwise maximum of the functions fi, . . . , fn, that is, to
the upper envelope of their graphs in

�
3. This envelope,

in turn, is the graph of a convex function again. There-
fore, a sweep across

�
3 with a horizontal plane starting

at z = ∞ will correctly report the individual components
of this envelope in descending z-order. (It should be ob-
served that this technique is not applicable for computing
the closest-segment diagram, due to lack of convexity for
the corresponding lower envelope.) Viewed in the two-
dimensional picture, we start with the unbounded edges
of FV (S) (which are available from step one) and com-
pute the edges and vertices of FV (S) in order of decreas-
ing distance from their farthest segment(s) in S.

The resulting algorithm is easy enough to be described

in some detail. We maintain a cyclically ordered list C

of all detected though uncompleted edges. In addition,
pairs (e, e′) of edges adjacent in C are held in a pri-
ority queue Q, which is organized by decreasing dis-
tance ∆(e, e′) defined as follows. Let e ⊂ sep(si, sj) and
e′ ⊂ sep(sj , sk). If i 6= k then ∆(e, e′) is the distance of v

to the farthest segment in S, where v is the first point of
intersection of sep(si, sj) and sep(sj , sk). If i = k then
∆(e, e′) = ∞ (meaning highest priority). Observe that C

and Q can be initialized in time O(n).
The generic step processes the next pair (e, e′) in Q

and removes it from Q. If ∆(e, e′) < ∞ then the edges e

and e′, that end at the vertex v, are reported and removed
from the list C, and a new edge being part of sep(si, sk)
is inserted into C. If ∆(e, e′) = ∞ then we only report a
single edge, determined by sep(si, sj), and no vertex, and
remove e and e′ from C. Finally, we update Q so as to
reflect the (constantly many) changes of adjacency in C.
These actions can be carried out in O(log n) time per pair,
and lead to the construction of at least one edge of FV (S).

The number of edges of FV (S) is O(n) by Theorem 3,
and we can summarize as follows.

Theorem 5 Let S be an arbitrary set of n line segments in
the plane. The farthest-segment Voronoi diagram of S can
be constructed in O(n log n) time and O(n) space.

The algorithm is asymptotically optimal; it covers the
case where all segments in S are points, and where it
thus implicitly constructs the convex hull of n points in
the plane. Because it uses only basic data structures and
techniques, the algorithm is a candidate for practical im-
plementation. It outperforms alternative approaches like
divide-and-conquer or incremental insertion not only by
its simplicity but also because—apart from the starting
phase—only parts of the diagram are computed which do
not have to be deleted later.

The question of whether the farthest-segment Voronoi
diagram of a convex polygon can be computed faster is left
open. We conjecture that an O(n) algorithm is possible, as
this is true for the closest-segment case, the medial axis of
a convex polygon [1].
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