next up previous
Next: Factor graphs: Robot Localization Up: MLA_Exercises_2011 Previous: Factor graphs: HMM model

Message passing in Gaussian Bayesian networks [3 P]

Consider the Bayesian network illustrated in Fig. 5 with the probabilities

$\displaystyle P({\bf x}_0)$ $\displaystyle =$ $\displaystyle \mathcal{N}({\bf x}_0\vert{\bf a}_0,{\bf Q}_0)$ (1)
$\displaystyle P({\bf x}_{t+1}\vert{\bf x}_{t})$ $\displaystyle =$ $\displaystyle \mathcal{N}({\bf x}_{t+1}\vert{\bf A}_t {\bf x}_{t} + {\bf a}_{t}\vert{\bf Q}_{t})$ (2)
$\displaystyle P({\bf y}_{t}\vert{\bf x}_{t})$ $\displaystyle =$ $\displaystyle \mathcal{N}({\bf y}_{t}\vert{\bf D}_t {\bf x}_{t} + {\bf d}_{t}\vert{\bf C}_{t})$ (3)

where $ \mathcal{N}({\bf x}\vert{\bf\mu},{\bf\Sigma})$ denotes the multivariate Gaussian distribution with mean $ {\bf\mu}$ and covariance $ \bf\Sigma$ .
Figure: Gaussian Bayesian network.
Image FG_MC3

Prove that the forward messages have again the form of a Gaussian distribution

$\displaystyle \alpha({\bf x}_t)=\mathcal{N}({\bf x}_t\vert{\bf S}_t^{-1}{\bf s}_t,{\bf S}_t^{-1})$ (4)

with mean $ {\bf S}_t^{-1}{\bf s}_t$ and covariance $ {\bf S}_t^{-1}$ as defined on the slides for the exercise hour (slide 23). (Hint: Use the three properties of Gaussian distributions discussed in the exercise hour.)


next up previous
Next: Factor graphs: Robot Localization Up: MLA_Exercises_2011 Previous: Factor graphs: HMM model
Haeusler Stefan 2011-12-06