The Liquid-State-Machine Approach
What types of computation does the brain perform?

Anytime-computation:

Offline-computation:
Fact: The cortex uses rather stereotypical microcircuits (columns, minicolumns, etc.) for a large variety of complex real-time computation tasks.

Goal: Explain how generic cortical microcircuits

- that consist of diverse types of neurons and diverse types of dynamic synapses

- with sparse recurrent connection patterns ("loops within loops")

could possibly achieve this.
The LSM-approach is based on the following observations:

• If one excites a sufficiently complex dynamical system with a continuous stream of inputs $u(s)$, and looks at the state $x(t)$ of the system at a later time t, then $x(t)$ is likely to hold a substantial amount of information about recent inputs $u(s)$ for $s < t$, especially if the dynamical system consists of diverse dynamical components, and is not chaotic.
Liquid State Machine

complex dynamical system (viewed as a nonlinear filter)

memoryless readout, trained for a specific task

\[u(s) \text{ for all } s \leq t \]

\[x^M(t) = (L^M u)(t) \]

\[y(t) = f^M(x^M(t)) \]

\[x^M(t) \] = liquid state of the Liquid State Machine
Mathematical theorems guarantee that any time-invariant fading memory filter that maps input-streams onto output streams can be approximated with any desired degree of precision (and in real-time) by liquid state machines of finite size.

- **if** there is a rich enough pool B of basis filters from which the dynamical system can be composed

 and

- **if** there is a rich enough pool F of readout functions.

F has fading memory:

- In order to determine the output $(Fu(\cdot))(t)$ with a given precision ε it suffices to know the values of $u(t-\tau)$ up to some finite precision δ for all tau from some finite time interval $[0, T]$.
Results of computer simulations:

A linear readout neuron.

Networks of leaky-integrate and fire neurons locally connected.
7 linear readouts with adjustable weights

\[f_1(t) : \text{sum of rates of inputs 1&2 in the interval } [t-30 \text{ ms}, t] \]

\[f_2(t) : \text{sum of rates of inputs 3&4 in the interval } [t-30 \text{ ms}, t] \]

\[f_3(t) : \text{sum of rates of inputs 1-4 in the interval } [t-60 \text{ ms}, t-30 \text{ ms}] \]

\[f_4(t) : \text{sum of rates of inputs 1-4 in the interval } [t-150 \text{ ms}, t] \]

\[f_5(t) : \text{spike coincidences of inputs 1&3 in the interval } [t-20 \text{ ms}, t] \]

\[f_6(t) : \text{nonlinear combination } f_6(t) = f_1(t) \cdot f_2(t) \]

\[f_7(t) : \text{nonlinear combination } f_7(t) = 2f_1(t) - 4f_1^2(t) + \frac{3}{2}(f_2(t) - 0.3)^2 \]
Testing the generic microcircuit model on the speech recognition task:

- recognition of spoken words "zero", "one", ... "nine", each spoken 10 times by 5 different speakers, each spoken word encoded into 40 spike trains by Hopfield and Brody

(we used 300 examples for training, 200 for testing)
Results

- the generic neural microcircuit model classifies the spoken word \textit{instantly} when the word ends (i.e., in real-time)
- linear readouts from the generic microcircuit model can even be trained to do \textit{anytime} speech classification: