Mapping Information Flow in Sensorimotor Networks

Stefan Klampfl
klampfl@igi.tugraz.at

Institute for Theoretical Computer Science (IGI)
Graz University of Technology, Austria

Computational Intelligence Seminar A, WS 2007/08
January 28, 2008

Outline

Introduction

Methods
 Robots
 Neural control architecture
 Informational measures

Results
 Effects of sensorimotor coupling on information flow
 Effects of learning on information flow
 Effects of morphology on information flow

Discussion
Introduction

- Biological organisms continuously sample sensory inputs, create neural representations, and select motor actions (Organisms are *embedded* in their environment)
- Hypothesis: statistical regularities in the inputs and neural responses are a result of *combined* action of sensory and motor systems and of body morphology
- How is directed information flow between sensory, neural and motor variables actively shaped by the interaction with the environment?
- Using physical and simulated robots, the effects of sensorimotor coupling, learning, and morphology on information flow are analyzed
Robots

- 3 morphologically and behaviorally different robotic platforms:

 - **Roboto:**
 - fixed miniature humanoid robot
 - 5 DOF: left arm (shoulder, elbow, wrist), head (pan, tilt)
 - red ball attached to tip of the last joint

 - **Strider:**
 - mobile quadruped robot
 - 14 DOF: four legs (3 DOF each), head (pan, tilt)
 - environment with red and blue blocks, black walls

 - **Madame:**
 - simulated mobile robot with wheels
 - 4 DOF: 2 wheels, head (pan, tilt)
 - square arena with blue walls and 20 red floating spheres
Robots & Neural Control Architecture
Neural Control Architecture

- Active vision system computes saliency map Sal from visual input; peak of Sal determines motor output
- Color-intensity maps Col_{RGBY} record the pixel-wise thresholded intensity of the dominant colors R, G, B, and Y
- Saliency map is a weighted sum of the color-intensity maps: $Sal = \eta_{RGBY} \cdot \text{Col}_{RGBY}$
- Saliency factors η_R, η_G, η_B, and η_Y encode the relative saliency of each color
 - *Roboto, Madame*: $\eta_R = 1, \eta_G = \eta_B = \eta_Y = 0$ (fixed)
 - *Strider*: modified dependent upon experience
Neural Control Architecture

- Plasticity of the saliency factors η_{RGBY} for Strider:
 - “virtual taste” sampled through a virtual tastepad attached below the camera
 - appetitive (T_{AP}) and aversive (T_{AV}) taste inputs, depending on the color
 - color-taste associations under experimental control (red-appetitive/blue-aversive or red-aversive/blue-appetitive)
 - rewarding and aversive neural signals:

\[
rew(t) = S_{rew}(t) \cdot \Phi(T_{AP}(t))
\]
\[
ave(t) = S_{ave}(t) \cdot \Phi(T_{AV}(t))
\]
\[
S_{rew,ave}(t) = \begin{cases}
1 & \text{if } T_{AP,AV}(t) > T_{AP,AV}(t - 1), \\
0 & \text{otherwise}
\end{cases}
\]

\[\Phi(\cdot)\]... standard sigmoidal function
Plasticity of the saliency factors η_{RGBY} for \textit{Strider}:

- update equation of the saliency factors:
 \[
 \eta_{RGBY}(t) = \eta_{RGBY}(t-1) + \alpha \cdot (rew(t-1) - 2 \cdot \text{ave}(t-1)) \\
 \cdot P_{RGBY}(t-1) - \delta \cdot (\eta_{RGBY}(t-1) - \eta_0)
 \]

- P_{RGBY} . . . binary vector of activation in the center of the color-intensity maps Col_{RGBY}
- learning rate $\alpha = 0.2$
- decay rate $\delta = 0.0005$
- $\eta_0 = [0.1, 0.1, 0.1, 0.1]$
- initial value $\eta_{RGBY}(0) = [0.25, 0.25, 0.25, 0.25]$

- Positive changes in the appetitive (aversive) taste input generate phasic and graded rewarding (aversive) signals that increase (decrease) the saliency factors.
Informational Measures

▶ Shannon entropy
 ▶ Given a time series x_t that can assume N states

$$H(X) = - \sum_{i=1}^{N} P_X(i) \log P_X(i)$$

▶ $P_X(i)$ is the probability of x_t being in the i-th state
▶ measure of the average uncertainty

▶ Mutual information
 ▶ measure of statistical dependence of two random variables

$$MI(X, Y) = \sum_i \sum_j P_{XY}(i,j) \log \frac{P_{XY}(i,j)}{P_X(i)P_Y(j)}$$

▶ symmetric, unable to reveal directed interactions
Informational Measures

- **Integration**
 - multivariate generalization of mutual information to a set of random variables $X = \{X_i\}$

 $$I(X) = \sum_i H(X_i) - H(X)$$

 - captures the total amount of statistical dependency among X

- **Complexity**
 - measures how statistical dependence is distributed over a system

 $$C(X) = H(X) - \sum_i H(X_i|X - X_i)$$

 - complexity is high for systems X combining local and global structure
 - complexity is low for entirely random or entirely uniform systems
Informational Measures

- **Transfer Entropy (Schreiber, 2000)**
 - measures directed information flow ("causal dependency") from time series y_t to x_t
 - quantifies deviation from the generalized Markov property

 $$p(x_{t+1}|x_t, y_t) = p(x_{t+1}|x_t)$$
 - measures degree of dependence of X on Y, and *not vice-versa*
 - $T(Y \rightarrow X) \geq 0$
 - $T(Y \rightarrow X) = 0$ if the state of Y has no influence on the transition probabilities of X, or if X and Y are completely synchronized

$$T(Y \rightarrow X) = \sum_{x_{t+1}} \sum_{x_t} \sum_{y_t} p(x_{t+1}, x_t, y_t) \log \frac{p(x_{t+1}|x_t, y_t)}{p(x_{t+1}|x_t)}$$
Effects of sensorimotor coupling on information flow

- Two experimental conditions:
 - *foveation* (“fov”): sensorimotor coupling undisturbed
 - *random* (“rnd”): sensorimotor coupling disrupted by substituting a previously recorded motor signal
- Condition “rnd” leaves the statistical patterns in sensory and motor signals intact
- Differences in information measures can be attributed to presence or absence of sensorimotor coupling
- Maps of information measures for array I_R in *Roboto*:
Effects of sensorimotor coupling on information flow

Transfer entropy between array $S = I_R$ (left) and $S = Sal$ (right) and pan-tilt amplitude (M) for Roboto:

positive time offsets: S leading M; negative time offsets: M leading S
Effects of sensorimotor coupling on information flow

Transfer entropy between array $S = I_R$ (left) and $S = Sal$ (right) and pan-tilt and leg amplitude (M) for *Strider*:

- Peaks of transfer entropy for leg movement amplitudes are laterally displaced
Effects of learning on information flow

- Saliency factors η_{RGBY} are learned in the neural architecture of Strider
- System is able to adapt if, e.g., rewarding objects become aversive, and vice-versa
- Experiment: saliency switched at $t = 3000$ from red=rewarding/blue=aversive to red=aversive/blue=rewarding
Effects of learning on information flow

Transfer entropy maps for $S = I_R$, $S = I_B$, and $S = Sal$; $M = \text{eye (pan-tilt) amplitude}$
Effects of morphology on information flow

- Can the morphology of visual sensors affect visuo-motor information flow?
- Spatial resolution of photoreceptors varies across the visual field
- Simulated mobile robot Madame with a “log-polar” distribution of photoreceptors
 - Topographical (retino-cortical) mapping: $(r, \theta) \rightarrow (u, v)$:
 \[
 u(r, \theta) = k \log \left(\frac{r}{a} + 1 \right) \\
 v(r, \theta) = \theta
 \]
 - $k \ldots$ normalization constant
 - $a \ldots$ parameter determining the density distribution of retinal cells
Effects of morphology on information flow

Mapping “template” and inverse mapping for different values of a

Cortical magnification depends on the photoreceptor density
Effects of morphology on information flow

- Transfer entropy values for different values of $a = 2^k$
 - $S = 6 \times 6$ pixel patch from central (solid) or peripheral (dashed) region
 - $M = \text{angular velocity difference between left and right wheel}$

- Transfer entropy depends on the size of the object on the retina (visual magnification factor)
- Eye morphology affects information flow
Discussion

- Sensorimotor networks are defined by the dynamic coupling between sensory, neural, and motor variables.
- This paper provides a quantitative framework to map these networks using informational measures (undirected and directed).
- Information flow in sensorimotor networks is:
 - quantifiable and variable in magnitude
 - temporally and spatially specific
 - modifiable with experience
 - dependent upon morphology
- Results hold across several different robotic platforms.
Discussion

- **Transfer entropy** is used as a measure of directed information flow
 - “model-free” approach to data analysis
 - makes minimal assumptions about the time series
 - captures linear and nonlinear effects
 - numerically stable for small sample sizes

- Inferring true “causal dependency” from mere time-series is problematic (unobserved variables, hidden sources)

- Comparison between unperturbed and perturbed experimental conditions (fov, rnd) allowed the identification of directed relationships caused by sensorimotor coupling
Discussion

- Extension of information theory to sensorimotor networks naturally captures the effects of motor outputs on sensory inputs.
- Sensorimotor coupling can generate additional information that may promote more efficient neural coding.
- Techniques can be applied to all types of variables (sensory, motor, neural) on all levels of neural processing.
- First step towards a quantitative framework that unifies neural and behavioral processes.
- It could provide:
 - Insight into evolution and development of nervous systems.
 - Important design principle for more efficient artificial cognitive systems.
References

Methods for quantifying the informational structure of sensory and motor data.
Neuroinformatics, 3:243–262.

Mapping information flow in sensorimotor networks.

Measuring information transfer.