Local Rules optimize the Organization of Processes in Networks

Based on “Explicit Design and Adaptation in Self-Construction”
PhD Thesis by Fabian Roth, 2007

Michael Pfeiffer
pfeiffer@igi.tugraz.at

CI Seminar A, 30.01.2008
Limits of computational power on single processors are reached \(\Rightarrow\) parallelization

Efficiently distributing tasks over multiple CPUs with low-bandwidth communication channels is non-trivial

What can we exploit?
- Known properties of task (e.g. sub-processes)
- Known architecture of the network on which we parallelize the task (e.g. grid, client/server,...)
- What if we don’t have this prior information?
Two Examples

- **Nervous system**
 - Single cell: minimal computational capabilities
 - Low communication bandwidth
 - Power comes from high dimensionality and complex wiring

- **Graphical models** (e.g. factor graphs) are similar
 - Simple computations at nodes (sum / max)
 - Simple messages sent from node to node
 - Event-driven update
Goals of this Work

- Arbitrary network topology
 - Even changing topology allowed

- Single, simple processes on network nodes

- Complex computations emerge through interaction of simple units

- Ability to self-construct and self-repair
 - Optimize organization of processes on network
Agenda

- Introduction
- Networks of Distributed Processes
- Routing
- Process Migration in Networks
- Embedding of graphical models in networks
- Learning of connectivity from observation
Self Development of Process Networks

- Abstraction of earlier principles
 - Physical substrate → Computer network
 - Cell → Process
 - Chemical Diffusion → Message passing

- Only local rules guide organization of processes
 - No global observer!

- Processes live on nodes of a network
- Processes send out messages through links of network
Process Model

- **Core**
 - Management of messages and modules

- **Modules**
 - dynamically loaded
 - Addressed messages

- **Message**
 - Source and destination
 - Type and class
 - Message body

- **Modules can serialize themselves**
 - Program code is sent over the network (migration)
Dynamic Routing

- Task: transport message from node to other node
 - Local decision: which channel to use?
 - Value of sending message to destination over a particular channel

- Classical solution: *Bellman-Ford (BF)* routing
 - Global observer computes shortest path and stores lookup tables at each node
 - Basis for most routing schemes used today, e.g. IP-routing
Q-Routing

- Local, adaptive version of BF-routing
- Reinforcement Learning of Q-function
 - Value = estimated time to reach destination
 - $Q_x(y, d)$: at node x: value of sending a message to destination node d via neighbor y
 - After sending message to y, receive update value
 - $Q_y(\hat{z}, d) = \min_{z \in N(y)} Q_y(z, d)$
 - q_y ... delay from x to y

$$
\Delta Q_x(y, d) = \eta \left(Q_y(\hat{z}, d) + q_y - Q_x(y, d) \right)
$$
Q-Routing

- After convergence \(Q_x(y, d) = Q_y(\hat{z}, d) + q_y \)
- Learn good routing policy with some exploration

- Dual Reinforcement Q-Routing
 - Faster convergence if learning occurs in both directions
 - Message from source \(s \) contains information how to best reach \(s \) from current node

\[
\Delta Q_y(x, s) = \eta \left(Q_x(\hat{z}, s) + q_x - Q_y(x, s) \right)
\]

- No additional messages needed, slight increase of message size
Age Based Q-routing

- Even if messages diffuse randomly
 - Messages from source \(s \) most likely arrive through a channel that comes from a node close to \(s \)
- Strategy
 - Send message to destination \(d \) via a channel through which most messages from \(d \) arrived
 - Self-enforcing
 - Update at receiver-side, not sender-side
Age-based Update Rule

- Influence of message on Q-value decays with time
 \[\Delta Q_y(x, s) = \eta \left(\exp(-t_M \alpha) - Q_y(x, s) \right) \]
 - \(t_M \) ... age of message
 - \(\alpha \) ... aging factor

- Values inversely proportional to delay
- Q-values decay without usage
 - Allows changing topologies
 - Best routes are updated more frequently
- Immediate re-biasing of better routes
 \[Q_y(x, s) = \max(Q_y(x, s), \exp(-t_M \alpha)) \]
 - Immediately remembers shortest latency
Results

- 4 processes in grid-network, communication 1-4 and 2-3
- Limited capacity of edges (congestion)
- One (left) or two (right) bottlenecks join network parts
 - Shortest path alone cannot avoid congestion
• Age-based Q-routing finds shortest paths
• With two bottlenecks traffic is redirected to optimize overall performance
• 1-connector performance equivalent to shortest-path
• 2-connector performance significantly better
• Selfish optimization leads to optimal compound delivery time
Process Migration

- Process may change its position in network to optimize overall information delivery
 - e.g. move closer to sender/receiver
 - Based on previous local routing algorithm

- Value of node x for process i
 $$V_i(x) = \max_{y \in N(x)} Q_y(x, i) \approx \exp(-t_i(x)\alpha)$$
 - $t_i(x)$... fastest time to reach process i from x

- Induces *distance metric* on network related to positions of processes
 - Locally known, can be used to guide *migration* of processes
Migrational Objective Function

- A process needs to optimize latencies to all processes with which it communicates → find optimal position
 - Send out migration queries to neighbors
 - Monte-Carlo movement: always move to better location, stochastically move to worse location

- Objective function

\[O_t(x) = \sum_{j \in C} \langle l_j \rangle - \sum_{j \in C} \sqrt{\langle (\Delta l_j)^2 \rangle} - \pi n_x \]

\(l = \{\log V_j(x)\} \) ... vector of negative latencies to all connected processes
\(n_x \) ... number of processes on node x (penalty factor \(\pi \))

- Goals:
 1. minimize message ages
 2. minimize scattering of message ages (std. deviation)
 3. avoid gathering of multiple processes on one node
- Process 1 and 2 fixed, 3 can migrate
- Process attempts to be close, but equally distant to all connected processes
Embedding Graphs into Networks

- Graph Node → process
- Graph Edge → communication channels

- Grow a graph from single process/cell and optimally arrange it to network topology
 - Topology may change over time!

- Additional capabilities of graph processes
 - Contain internal description of entire graph
 - Can replicate into two processes
Embedding Example

- Single process tries to connect to graph neighbors
- If this fails → divide
- New process is graph neighbor
- New process behaves exactly in the same manner
- Connections of node 3 shown
- Local rules
 - Self-constructing
 - Self-maintaining
Embedding Example

- Single process tries to connect to graph neighbors
- If this fails → divide
- New process is graph neighbor
- New process behaves exactly in the same manner
- Connections of node 3 shown
- Local rules
 - Self-constructing
 - Self-maintaining
Altered Network Topology

- Interrupt communication
 - New routes are found
 - Processes migrate
 - Self-repair

- Now cut network in two
 - Figure (f)
Altered Network Topology

- Network is cut in two
 - Two sub-graphs re-build the whole graph
 - Two equivalent copies are built
 - Self-repair

- For full graphical model
 - Functional module required
 - Here only structure
Learning of Graphical Models

- Learning a simple world model
- Processes observe some (binary) variables from the world
- Causal connections are modeled as connected processes
 - Causal: $p(x_2=1 \mid x_1=1) = 1$
 - Hidden causes are allowed, e.g. $p(x_1), p(x_3)$

Directed Acyclic Graph (DAG)

Possible World States
Learning the Model Structure

- Task: Observe states of the world and infer causal relationships
 - D … set of observed data
 - G … graph structure

- Structure learning approaches
 - Maximize likelihood $L(G \mid D) = P(D \mid G)$
 - Bayesian inference, using $P(D \mid G)$ and prior $P(G)$
 - Here: incremental local rule
Causal Learning Rule

- Local update rule:
 \[P_{i \rightarrow j} = P(x_j | x_i) \approx \frac{f_{ij}}{f_i} \]
 probability of cause \(i \rightarrow j \)

 \[f_{ij} \rightarrow f_{ij} + x_i \cdot x_j \]
 frequency of joint occurrence

 \[f_i \rightarrow f_i + x_i \]
 frequency of occurrence of \(x_i \)

- \(x_i, x_j, P_{i \rightarrow j}^{\text{pre}} \) available at node
- bookkeeping for \(f_i \)
- replace \textit{learning rate} \(1/f_i \) by constant \(\eta \)
Results of Learning Rule

- Plot: x_{row} caused by x_{col}, learned from 2000 samples
 - Bottom row thresholded
 - Correlation as comparison
- Relation $8 \rightarrow 7$ is learned
 - Only $1/11$ of examples contain $x_7=1$, $x_8=0$
 - $9/11$ suggest $8 \rightarrow 7$
Analysis of Learning Rule

\[
\Delta P_{i \rightarrow j} = \frac{x_i}{f_i} \cdot (x_j - P_{i \rightarrow j}^{pre}) \approx \eta \cdot x_i \cdot (x_j - P_{i \rightarrow j}^{pre})
\]

- Learning rule has equilibrium at true \(P(x_j \mid x_i) \)

\[
\left\langle \Delta P_{i \rightarrow j} \right\rangle_{P(x_j \mid x_i)} = 0
\]

- Variance of update decays with \(f_i^2 \), thus converges to 0

\[
Var(\Delta P_{i \rightarrow j}) = \frac{P(x_i, x_j)}{f_i^2} \left(1 - P(x_j \mid x_i)\right)
\]

 - For causal scenarios replacing \(1/f_i \) by constant learning rate \(\eta \) accelerates convergence
 - Still, \(\eta \) should be chosen sufficiently small for small variance
Simulation in Network of Processes

- Observable variables (*sensory variables*)
 - Stationary processes that broadcast messages into the network

- *Observables* rebuild the causal graph
 - Moveable and replicating processes
 - Occupy nodes with sensory processes
 - Every sensor requires observer to make variables available to other processes in the network

![Diagram showing network of processes with observable variables s1 and o1, and connections to target process]
Modules for Observer Processes

- Observable replicator:
 - Wait for first broadcast message and specialize to observe this variable
 - Upon receiving other messages replicate and order new process to observe new variable

- Migration Module: optimize process location
- Sensor Module: broadcast variable values

- Causation Module:
 - Use learning rule to learn causations from incoming broadcasts
 - Add target processes if $P_{i \rightarrow j}$ rises above threshold (also remove too weak causal links)
Example

- Sensory variables s1-s9 placed randomly in y-dimension
- Alternate between possible world states every 2 seconds
- Start with single “Mother” – observable
Example

- Initial random specialization of Mother cell to o7
- Replication and migration of observables
- Table of causal links built
Learned Connectivity

After 300 sec simulation

- Indirect causes (e.g. 1→5) are learned
Connectivity from Temporal Correlation

- A consistently before B \(\Rightarrow\) A might cause B
- A consistently after B \(\Rightarrow\) A cannot cause B

- Idea of Spike Timing Dependent Plasticity (STDP)
 - Replace previous rule with STDP
 - Temporal simulation of input
 - Indirect causes not captured
 - Indirect causes need longer to take effect
Learned Connections with STDP

- Almost perfect reconstruction of graph
- No indirect causes
- Connection 6 → 7 incorrectly learned
 - Chains of events (3 → 6 and 3 → 5 → 7) lead to 6 being active one step before 7
Prediction and Novelty

- Predicted events need not be transmitted
 - Only *novelties* need to be sent around
- Suppress broadcasts of sensory variables if activity can be predicted by previous observables
 - Still send signal to connected processes
- Simulation: 85% of events correctly detected as novelties / caused events
Discussion

● Self-organization of processes on arbitrary network topology through local rules
 • Routing and process migration

● Embedding of graph structures

● Local rules for structure learning
 • Learn world model from observation
 • Use model for prediction
Discussion

- True learning architecture
 - Less pre-programmed rules and parameter settings
 - Communication targets learned from data

- Combine structure learning and functionality
 - Can we learn real probabilistic world models?

- Possible uses
 - Structure learning for graphical models
 - Peer-to-peer networks

- Does it relate to neural organization?
 - Processes not single neurons but functional areas