Overview

1. Motivation
 - Motivation

2. Different STDP rules
 - STDP rule of excitatory synapses
 - STDP of excitatory synapses onto inhibitory neurons
 - STDP of GABAergic synapses

3. Simulated Motifs using inhibitory STDP rules

4. Further question and future work
Motivation

Spike timing-dependent plasticity (STDP) have aroused interest among experimentalists and theorists.

STDP helps in understanding information coding and circuit plasticity.

Questions?

- What mechanisms underlie the cell type-specific temporal windows for LTP/LTD?
- Does activity-induced modification of GABAergic synapses influence neuronal networks?
Cellular Mechanisms

STDP is dependent on the temporal order of pre/post spiking.
→ What cellular mechanisms underlie this temporal specificity?

- Many spike timing-dependent LTP and LTD requires activation of the NMDA subtype of glutamate receptors (NMDARs)

Explanation for the temporally asymmetric STDP:
- Pre before post spiking lead to the opening of NMDARs via depolarization-induced of a block which results in a high-level calcium influx.
- Post before pre leads to a limited NMDAR activation resulting from opening voltage-dependent calcium channels.
Inhibitory postsynaptic potential

- Inhibitory postsynaptic potential short IPSP is a synaptic potential which decreases the chance that a future action potential will occur.
- IPSP is the opposite of EPSP.
- Inhibitory presynaptic neurons release neurotransmitters which bind the postsynaptic receptors.
- Ion channels open or close.
- Changes postsynaptic membrane potential and create more negative postsynaptic potentials.
GABA receptors

- *GABA* is the main inhibitory neurotransmitter in the central nervous system ([JOHNSTON et al., 2006])
- $GABA_a$, $GABA_b$ and $GABA_C$ are three different types of neurotransmitter -> What are their different characteristics?
- $GABA_a$ mediate fast inhibition and have a wide distribution throughout the central nervous system
- In contrast to the fast and transient responses from $GABA_a$ receptors, $GABA_C$ receptors mediate slow and sustained responses
- $GABA_C$ receptors are expressed in many brain regions, mostly found on retinal neurons.
Schematic STDP learning rule from excitatory synapses to excitatory neurons.
- LTP is induced whenever pre- before postsynaptic spiking post- before prepairing leads to LTD.
STDP of excitatory synapses onto inhibitory neurons

Figure: (From [Bell et al., 1997])

- Schematic STDP learning rule found by Bell and colleagues.
- LTD is induced whenever pre- before postsynaptic spiking
- post- before prepairing leads to LTP.
- LTD/LTP occur within a 60 ms window.
Inhibitory STDP rules

- Schematic STDP window from inhibitory to excitatory neurons found by Holmgren.
- LTP takes place whenever a post- before presynaptic spike pattern occurs within a 100 ms time window.
- Overlapping pre- and postsynaptic spiking leads to LTD.

Figure: (From [Holmgren and Zilberter, 2001])
Inhibitory STDP rules

Figure: (From [Woodin and Ganguly, 2003])

- STDP of GABAergic synapses found by Woodin.
- LTP takes place whenever a pre- and postsynaptic spike occur within a 20 ms time window.
- Pairing within 50 ms without consideration of the order leads to LTD.
Inhibitory STDP rules

- STDP window from of inhibitory synapses connected to excitatory neurons reported by Haas
- STDP rule acts similarly to the excitatory-excitatory STDP rule.

Figure: (From [Haas et al., 2006])

- STDP window from of inhibitory synapses connected to excitatory neurons reported by Haas
- STDP rule acts similarly to the excitatory-excitatory STDP rule.
There are many patterns which could appear in the network, one of them is the feed-forward loop.

Feed-forward loop is more likely in transcription networks compare to a random network → it is called a motif.

8 possible feed forward motifs, two are very abundant.
Feed-forward motif network

- 2 excitatory and 1 inhibitory pool
- Each pool contains 100 neurons
- 10 percent connection between each pool and 10 percent recursive connection within each pool
- Different inputs were given to one excitatory pool
- Rate based outputs were taken from the second excitatory pool
Results from simulating feed forward motif

- Rate based output (blue) and target (green) signals
- Correlation coefficient between target and output signal was 0.6516 ± 0.0442 without STDP rule
- Correlation coefficient between target and output signal was 0.77 ± 0.0423 using STDP learning (Figure 6).
STDP models

Classification of different model types by Pfister:
- phenomenological models
- biophysical models
- optimal models
Future work

- How can we use the different characteristics of GABA receptors?
- Understanding the roles of different inhibitory STDP rules
- Theoretical analyze of ideal networks (like Pfister and Gestner)
- Starting: Understanding the role of diverse inhibitory STDP rules in WTA-circuits
Discussion

- Which additional aspects would be interesting about STDP rules of inhibitory synapses?
- Where else could STDP rules improve network behavior?
- ...

Further question and future work

Simulated Motifs using inhibitory STDP rules

Different STDP rules

Motivation
Thanks for your attention
References

Bell, C. C., Han, V., Sugawara, Y., and Grant, K. (1997).
Synaptic plasticity in a cerebellum-like structure depends on temporal order.

Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex.

Coincident spiking activity induces long-term changes in inhibition of neocortical pyramidal cells.
Neurosci., 21:8270-8277.

Mixed antagonistic effects of bilobalide at gabac receptors.
Neuroscience, 137:607â’617.

Coincident pre- and postsynaptic activity modifies gabaergic synapses by postsynaptic changes in cl-transporter activity.