Binary vs. Analog Reservoir Computing: Connectivity and Performance

L. Büsing, B. Schrauwen and R. Legenstein

{lars,legi}@igi.tugraz.at
benjamin.schrauwen@elis.ugent.be
Introduction

Often two flavors of Reservoir Computing (RC) devices are considered:

- networks of **binary** (spiking) units: “LSMs”
 performance sensitive to details of connectivity
- networks of **analog** units: “ESNs”
 performance “robust” wrt. variations in connectivity

Systematical investigation via:

- Quantized ESNs:
 interpolation between binary and analog RC systems
- Influence of connectivity (parametrized by neuron in-degree) on computational performance

Büsing et. al. ()

Binary vs. Analog RC
1. Quantized ESNs and their Computational Performance
Definition (Quantized ESN)

- network state: \(x(t) = (x_1(t), \ldots, x_N(t)) \in (-1, 1)^N \) for \(N \) units

\[
x_i(t + 1) = (\psi_m \circ \tanh) \left(\sum_{j=1}^{N} w_{ij} x_j(t) + u(t) \right)
\]

- binary iid. input \(u(t) \in \{-1, 1\} \forall t \in \mathbb{Z} \) with \(p(u(t) = 1) = 1/2 \)

- quantization level \(m \in \mathbb{N} \) : determines admissible states per unit

\[
\psi_m : (-1, 1) \rightarrow S_m \subset (-1, 1)
\]

- state space \(S_m \) with cardinality \(2^m \)

- all units have common in-degree \(K \in \mathbb{N} \)

- presynaptic units are randomly chosen

- all non-zero weights \(w_{ij} \sim \mathcal{N}(0, \sigma^2) \) are normally distributed: mean zero and standard deviation \(\sigma \)

Investigate performance in \((\sigma, K)\)-parameter space
Online computations

- approximate binary TI operator on $u(\cdot)$ with fading memory
- target output $y_T(t)$ at time t function of the last n input bits:
 \[
 y_T(t) := f_T(u(t-1), \ldots, u(t-n))
 \]
 \[
 f_T \in \{f|f : \{-1, 1\}^n \to \{-1, 1\}\}
 \]
- RC approach: train linear classifier $y(t) = \text{sign} \left(\sum_i a_i x_i(t) + b \right)$
- performance measure $p_{\text{exp}}(f_T)$: “memory capacity” for task f_T
 averaged over circuits (= weight matrices) C for given K and σ
 \[
 MC_{\tau}(f_T, C) := \frac{\text{cov} \left(y(t), y_T(t-\tau) \right)^2}{\text{var}(y(t)) \text{var}(y_T(t))} \in [0, 1]
 \]
 \[
 p_{\text{exp}}(f_T, K, \sigma) := \left\langle \sum_{\tau=0}^{\infty} MC_{\tau}(f_T, C) \right\rangle_{C|K,\sigma}
 \]
Performance ρ_{exp} and the critical line

$m = 1$

\Rightarrow Maximum performance at chaos-order phase transition

\Rightarrow Maximum performance at chaos-order phase transition
Numerical results for ρ_{exp}

$m = 1$

$m = 3$

$m = 6$

Figure: $\rho_{\text{exp}}(\text{PAR}_5)$ for $\text{PAR}_n(u(t - 1), \ldots, u(t - n)) := \prod_{i=1}^{n} u(t - i)$

- small m:
 - maximum performance decreasing with K
 - region of good performance decreasing with K

- large m
 - maximum performance independent of K
 - region of good performance increasing with K
Further results for p_{exp}

Figure: $p_{\text{exp}}(\text{RAND}_5)$ averaged of 20 randomly chosen 5-bit tasks

Figure: $p_{\text{exp}}(\text{AND}_3)$ for 3-bit AND-task
2. Lyapunov Exponent and Rank Measure Analysis
Lyapunov exponent

Define “Lyapunov” exponent λ:

$$\lambda(K, \sigma) := \ln \left(\frac{\langle \delta_1(C) \rangle_{C|K,\sigma}}{\delta_0(m)} \right)$$

- $\delta_0(m)$: smallest admissible state perturbation for m
- $\delta_1(C)$: state distance after one time step
- quantifies average state separation caused by initial conditions

$\lambda < 0 \quad \lambda = 0 \quad \lambda > 0$

ordered critical chaotic

Lyapunov exponent

A. Quantization $m=1$ bit

B. Quantization $m=6$ bit

$\lambda = \log(\sigma) - \log(\sigma_0)$

$K=3$
$K=12$
$K=24$
Rank measure

Two aspects are important for high computational performance of a circuit C:

- **kernel rank** $r_k(C)$
 - quantifies “kernel quality”
 - high $r_k(C) = “rich”$ reservoir
 - \approx memory about recent inputs

- **generalization rank** $r_g(C)$
 - low $r_k(C) = circuit C$ generalizes well
 - $r_k(C)$ linked to VC dimension
 - \approx memory about remote inputs

Heuristic measure for computational performance:

$$p_{\text{rank}}(K, \sigma) = \left\langle r_k(C) - r_g(C) \right\rangle_{C|K,\sigma}$$

[R. Legenstein, W. Maass. Neural Networks 2007]
Rank measure

Rank measure

$m = 1$: increasing $K \rightarrow$ small region of efficient trade-off between memory about recent and remote inputs

$m = 6$: shift of r_k and r_g
3. Mean-field Predictor for Computational Performance
NM-separation

NM: mean-field predictor for Computational Performance based on the separation ability of a binary network:

- $\text{NM} := s^* - f^* - i^*$
- large system limit ($N \to \infty$), annealed approximation
- pros:
 - prediction is quite accurate
 - relating performance and separation property
- cons:
 - computationally expensive
 - cannot easily be extended to quantization levels $m \neq 1$

[Bertschinger, Natschläger. Neu. Comp. 2003]
Single bit separation

\[\text{Input} \quad u(t-1), u(t-2), \ldots, u(t-k), \ldots \]

\[\mathbf{x}^1(t) \]

\[\uparrow \]

\[\mathbf{x}^2(t) \]

\[\text{Input} \quad u(t-1), u(t-2), \ldots, -u(t-k), \ldots \]

\[d(k) := \frac{1}{N} \left\langle \| \mathbf{x}^1(t) - \mathbf{x}^2(t) \|_1 \right\rangle_u \]
Novel mean-field predictor

Define single bit separation of bit k:

$$d(k) := \frac{1}{N} \langle \|x^1(t) - x^2(t)\|_1 \rangle_u$$

$$u_2(t - i) = +u_1(t - i) \quad \forall i \in \mathbb{N}\{k\}$$

$$u_2(t - k) = -u_1(t - k)$$

heuristic performance predictor p_∞:

$$p_\infty := \max\{d(2) - d(\infty), 0\}$$

- $d(2)$: input separation on short (=relevant) time-scales
- $d(\infty)$: input separation on long (=irrelevant) time-scales
- efficient numerical evaluation possible for: $N \to \infty$ and annealed approximation
Novel mean-field predictor

\(m = 1 \)

\(m = 3 \)

\(m = 6 \)
Contributions to ρ_{∞}

- $m = 1$: $\max_{\sigma} \{d(2) - d(\infty)\}$ decreases with increasing K
- $m = 6$: constant shift in $d(2)$ and $d(\infty)$
Input separation & memory function

single bit separation is an upper bound for the memory function $m(k)$:

$$m(k) \leq \frac{1}{4} \| C^{-1} \|_2 \cdot d(k)^2$$

- $C_{ij} = \langle x_i(t)x_j(t) \rangle$, C^{-1} pseudo inverse of C
- bound also holds for analog ESNs
- for globally contracting analog ESNs:

$$m(k) = O(\exp(-2k\gamma)) \quad \text{for } \gamma > 0$$
4. Summary and Outlook
Quantized ESNs with quantization level m

- for small m: in-degree K has large influence on computational capabilities \rightarrow LSMs
- for large m: in-degree K has little influence on computational capabilities \rightarrow ESNs

- effect can be linked to:
 Lyapunov exponent, rank measure and separation property
Open questions

- Different connectivity graphs with the same in-degree show similar behavior. Is the in-degree the only quantity of interest?
- Can the observed effect explain the difficulties to tune a spiking network to a decent working regime?
- Why do cortical (spiking) neurons have a high in-degree?
Joint work with:

Benjamin Schrauwen

Robert Legenstein
Kernel rank

Classification task with two classes on \(l \) inputs \(u_1(\cdot), \ldots, u_l(\cdot) \)

\[
r_k(C) := \text{rank} \begin{pmatrix} x[u_1]_1(t) & \cdots & x[u_1]_N(t) \\ \vdots & \ddots & \vdots \\ x[u_l]_1(t) & \cdots & x[u_l]_N(t) \end{pmatrix}
\]

- \(x[u_i](t) = (x[u_i]_1(t), \ldots, x[u_i]_N(t)) \)
 state vector after applying input \(u_i(\cdot) \)
- if \(r_k(C) = l \): all binary classification tasks can be performed
- in general: \(r_k(C) \) “degree of freedom” for classification task
Generalization rank

Classification task with two classes on \(l \) inputs \(u_1(\cdot), \ldots, u_l(\cdot) \)

\[
 r_k(C) := \langle \text{rank} \begin{pmatrix}
 x[\tilde{u}_{i,1}]_1(t) & \cdots & x[\tilde{u}_{i,1}]_N(t) \\
 \vdots & \ddots & \vdots \\
 x[\tilde{u}_{i,o}]_1(t) & \cdots & x[\tilde{u}_{i,o}]_N(t)
 \end{pmatrix} \rangle_i
\]

- \(\tilde{u}_{i,j}(\cdot) \) for \(j \in \{1, \ldots, o\} \): noisy variations of \(u_1(\cdot) \)
 i.e. \(\tilde{u}_{i,j}(\cdot) \) are in the same class as \(u_i(\cdot) \)
- if \(r_g(C) \) small: network generalizes well
- \(r_g(C) \) linked to VC-dimension