Learning and Generalization of Motor Skills by Learning from Demonstration

(P. Pastor, H. Hoffmann, T. Asfour, St. Schaal)

Maria Schag
Introduction
Dynamic Movement Primitive framework

DMP framework
Set of differential equations
Learning from demonstration
Generating a movement plan
Drawbacks
Modified DMP

Motion Library
Attaching Semantic
Combination of Movement Primitives

Experiment
Sarcos Slave arm
Water-serving task
Pick and Place task
Introduction

'Is Imitation learning the route to humanoid robots?'
(St. Schaal: Trends in Cognitive Sciences, 1999)

Crucial for the widespread of anthropomorphistic robots that shall assist humans: easy programming (e.g.: learning from demonstration).
Introduction cont.

Three challenges need to be mastered for imitation:

- **Correspondence problem**
 (human links/ joints might not match the links/ joints of the robot)

- **Generalization**
 (important, that movement can be generalized to a different context)

- **Robustness against perturbation**
 (dynamic environment → obstacle avoidance)
Introduction cont. *DMP*

Dynamic Movement Primitive (DMP) framework

A recorded movement is represented with a set of differential equations.

Advantages:

- Perturbance can automatically be corrected for by the dynamics of the system (robustness)
- Adaption to a new goal is simply achieved by changing a goal parameter (generalization)
- The movement trajectory is represented in end-effector space (correspondence problem)
Introduction cont.

How to deal with complex motion?

Build a library out of movement primitives out of which complex motion can be composed by sequencing!

example: grasping – placing – releasing

Due to the generalization ability of each dynamic movement primitive, an object may be placed between two arbitrary positions.
DMP \quad \textit{set of differential equations}

\textbf{Transformation System:}

\begin{align*}
\tau v' &= K(g-x) - Dv + (g-x_0)f \\
\tau x' &= v
\end{align*}

x, v position, velocity of the system

x_0, g start and goal position

τ temporal scaling factor

K acts like a spring constant

D damping term

f non-linear function that can be learned
DMP cont. set of differential equations

Non-linear fcn and canonical system (4):

\[(3) \quad f(s) = \frac{\sum_i w_i \psi_i(s)s}{\sum_i \psi_i(s)}, \quad \psi_i(s) = \exp(-h_i(s-c_i)^2) \]

\[(4) \quad \tau s' = -\alpha s \]

\[\alpha \quad \text{pre-defined constant} \]

\[c_i, h_i, w_i \quad \text{center, width and adjustable weights of Gaussian basis functions} \]
DMP cont. Learning from demonstration

- Movement $x(t)$ is recorded, $v(t)$ and $v'(t)$ are computed for each time step $t = 0, ..., T$
- $s(t)$ is computed for appropriate adjusted τ

- $f_{\text{target}}(s) = \frac{-K(g - x) + Dv + \tau v'}{g - x_0}$, $x_0 = x(0)$, $g = x(T)$

- Finding w_i by minimizing the error criterion:

$$J = \sum_s (f_{\text{target}}(s) - f(s))^2$$
DMP cont. *Generating a movement plan*

A movement plan is generated by reusing w_i, specifying x_0, g and setting $s = 1$
DMP cont. *Drawbacks*

Drawbacks of the original DMP formulation:

- x_0, g are the same \rightarrow system will remain in x_0
- Scaling of f problematic if $(g - x_0)$ close to zero
- If $(g_{\text{new}} - x_0)$ changes its sign compared to $(g_{\text{original}} - x_0)$, the resulting generalization is mirrored
DMP cont. Modified DMP

Replacing the Transformation system

(1) \[\tau v' = K(g-x) - Dv - K(g-x_0)s + Kf(s) \]

(2) \[\tau x' = v \]

\(K(g - x_0) \) is required to avoid jumps at the beginning of a movement.

Learning and propagating DMPs is achieved with the same procedure as before, except:

\[f_{\text{target}}(s) = \frac{\tau v' + Dv}{K} - (g-x) + (g-x_0)s \]
DMP cont. *Modified DMP*

Comparison of goal-changing results

between old (left) and new (right) DMP formulation
DMP cont. *Modified DMP*

Obstacle Avoidance

Adding a coupling term \(p(x, v) \):

\[
\tau v' = K(g - x) - Dv - K(g - x_0) s + Kf(s) + p(x, v)
\]

Derived from Fajen / Warren (2003):

\[
p(x, v) = \gamma R v \phi \exp(-\beta \alpha)
\]

- \(R \): rotational matrix with axis \(r = (x-o) \times v \) and angle of rotation of \(\pi/2 \)
- \(\gamma, \beta \): constant
- \(\phi \): angle between direction of end-effector towards obstacle / end-eff.'s velocity relative to the obstacle
Motion Library

Conceptual sketch of an imitation learning system:
Additional information is needed!

Traditional AI planning algorithms formalize the domain scenario by defining a set of pre- and post-conditions.

→ Such algorithms are based on discrete symbolic representations of object and action.
Motion Library cont. *Combination of MP*

Minimum – jerk movements

Jumps in the acceleration signal are avoided by initializing the succeeding DMP by

\[v_{\text{pred}} \rightarrow v_{\text{succ}} \text{ and } x_{\text{pred}} \rightarrow x_{\text{succ}} \]

Different switching times:
A lighter color indicates an earlier switching time.
Experiment: Sarcos Slave arm

7 DOF anthropomorphic arm with 3 DOF end-effector
Experiment cont. 10 dimensional DMP

Involved variables:

End-effector's position \((x, y, z)\) in Cartesian space

End-effector's orientation \((q_0, q_1, q_2, q_3)\) in quaternion space

Finger position \((\theta_{TL}, \theta_{TV}, \theta_{FAA})\) in joint space
Experiment cont.

Water-serving task:
Experiment cont.
Online adaption & obstacle avoidance

Pick and place: http://www-clmc.usc.edu
Conclusion & Outlook

Done yet:

- Extension of the DMP framework to action sequences that allow object manipulation
- Adding of semantic information

Future work:

- Extension of the movement library
- Focus on associating objects with actions
- Application of this framework on a humanoid robot
Thank you for your attention...