Graph Based RL

- Reinforcement Learning for Continuous Tasks
 - General Problems…
 - Some Solutions

- Similar Existing Methods
 - Kernel Based Reinforcement Learning [Ormoneit00, Jong06]
 - Robust Combination of Local Controllers [Guestrin01]

- Graph Based RL
 - Sampling Strategy for the nodes
 - Optimal Exploration Strategies…
 - Benchmarks…
Most control problems are continuous in the state space, action space and time.

Nearly all RL methods need to discretize time
- Exception: Continuous Time RL [Doya00].
 - Mathematical treatment in continuous time
 - Implementation: We need to discretize time again

Many of them need to discretize the action space
- Nearly all Q-Learning Methods
- Exception: Actor Critic / Policy Gradient Methods
- For high quality movement trajectories, discretization can affect the quality of the policy considerably
RL for Continuous State Spaces

- Function Approximation
 - Parametric Function Approximation
 - Converges only in special cases
 - Convergence not to the true optimal Q-Function
 - Not consistent: More training data does not need to improve the policy
 - Local FA’s: Curse of dimensionality!!
 - Online Learning Methods (like Q-Learning)
 - May suffer from catastrophic forgetting
 - Learning can be very slow
 - Small Learning rates have to be used
 - Training data is not used efficiently
Kernel Based RL

- Non-Parametric function approximation method
- Instance Based:
 - For each action:
 - Set of states and successor states
 - Samples: \((x_s, a, y_s^a, r)\), where \(r = r(y_s^a, x_s, a)\)
 - Batch learning method
 - Discrete Set of actions is used
- Global optimality property
 - Additional training data always improves the quality of the Q-Function estimates
- Approximates transition probabilities and rewards instead of the value function
Kernel Based RL: Assumptions

- Generative Model: Simulator of the process
 - Black-Box:
 - Takes state x and action a
 - Output: Outcomming state y sampled according to dynamics of the MDP and reward r

- Training data:
 - For each action: \(S^a = \{(x_s, y_s^a) | s = 1, \ldots, m\} \)
 - \(x_s \) has to be uniformly sampled in the state space
 - Quite restrictive and not realistic, only for offline-learning…
 - Needed for convergence proofs…
Kernel Based RL

- **Discrete Case:**
 - Reward and Value Function are piecewise constant on a finite number of partitions $B_1 \ldots B_N$
 - With sufficient training data we can estimate transition probabilities and rewards of the partitions (see Prioritized Sweeping).

- **Continuous Case:**
 - Smoothing with fuzzy partitions
 - Membership function:
 - Weighting kernel $k_{S^a,b}(x, x')$
 - \[\phi^+ \left(\frac{\|x - x\|}{b} \right) / \sum_{(x_u, y_u^a) \in S^a} \phi^+ \left(\frac{\|x_u - x\|}{b} \right) \]
 - Bandwidth Parameter: b
Kernel Based RL

- **Notation:**
 - Iteration Operator
 - $Q_{t,a}^* = \Gamma_a J_{t+1}^*(x) = E[r(X_{t+1}, x, a) + \alpha J_{t+1}^*(X_{t+1}) | X_t = x, a_t = a].$
 - Maximum operator over all actions:
 - $J_t = \mathcal{T} Q_t$
 - Approximation of the Q-Function
 - $\hat{J}_a J(x) = \sum_{(x_s, y_s^a) \in S^a} k_{S^a, b}(x_s, x) [r \left(y_s^a, x_s, a \right) + \alpha J \left(y_s^a \right)].$
 - It is sufficient to find a set of function values at the locations y_s^a which satisfies the condition $\hat{J}(y_s^a) = (\mathcal{T} \hat{\Gamma}_a J)(y_s^a)$
 - Q-Values of new states x can then be derived by $\hat{J}_a J(x)$
Kernel Based RL

- Theorem 1: The approximate value iteration converges to a unique fixed point.
- Theorem 2: If we use an admissible shrinkage rate for the kernel bandwidth, the approximate value function converges to the optimal value function as the number of samples in each data set S^a goes to infinity.
- First theoretical result which can guarantee convergence to optimal policy.
Kernel-Based Prioritized Sweeping [Jong06]

- Online version of Kernel Based RL
 - Sampling assumptions are hurt -> no convergence guarantee any more
- Prioritized Sweeping (discrete case)
 - Uses maximum Likelihood estimates of the transition probabilities and the reward.
 - If $n^{s,a} > n_{\text{known}}$
 - Also includes directed exploration policy for unknown transitions
 - Define absorbing state with value V_{max} for all transitions with $n^{s,a} \leq n_{\text{known}}$
 - Optimistic Values are propagated through state space
 - => Directed exploration…
Online Kernel-Based RL

- Quantities needed for prioritized sweeping are estimated via kernels:
 \[T(s, a, s') = \frac{1}{Z_{s,a}} \phi \left(\frac{d(s, s_i)}{b} \right), \text{ if } a_i = a \]
 \[R(s, a) = \frac{1}{Z_{s,a}} \sum_{i | a_i = a} \phi \left(\frac{d(s, s_i)}{b} \right) r_i \]

- If \(Z_{s,a} \) is below a certain threshold add exploration transition to terminal node.
- First use of model-based directed exploration for continuous state spaces
Online KBRL

- Absolute Transitions:
 - Also assigns high probability to transitions in opposite direction.
 - Depends highly on the kernel width
 - Small kernel width needed
 - Needs many Samples…
- Better: Relative Transition
 - Computational much more expensive, 2nd Kernel needed…
Online KBRL

- **Pros:**
 - Model-Based directed exploration
 - Sampling Based: Better convergence properties than parametric methods

- **Cons:**
 - Computationally quite expensive
 - Needs a lot of training samples
 - No mechanism to adapt the density of states in relevant areas
 - Still uses discrete time and actions
Graph-Based RL

- Robust Combination of Local Controllers [Guestrin01]
 - Local Controllers have to be known
 - Simple controllers (e.g. connect 2 points with a straight line)
 - Randomized algorithm:
 - Nonparametric combination of local controllers
 - Generalizes probabilistic roadmaps: [Hsu et al.99]
 - Stochastic domains
 - Connect random samples in the state space with local controllers
 - Uses continuous actions and timesteps
 - Discounted MDPs
 - Stochastic motion planning:
 - Given some start and goal configurations, find a high probability of success path.
 - Quality of local controller:
 - Success Probability and Costs of local controller
Robust Combination of Local Controllers

- Sample Nodes uniformly in the state space
 - $X_1 \ldots X_{N-1}$, X_0...start state, X_N...goal state
- Simulate to estimate local connectivity
 - Estimate p_{ij} for k nearest neighbors of i
- Shortest path algorithm to find most probable path from X_0 to X_N
 - Connection Weights: $-\log p_{ij}$
 - Stochastic Domain: Exact position of obstacles is unknown
 - Path with highest probability:
Robust Combination of Local Controllers

- What about Costs?
 - MDPs find path with lowest expected cost:
 - Implicit trade-off: cost of hitting obstacles and reward for goal
 - In Robotics, a successful path often more important than a short path:
 - Make the trade-off explicit:
 - What is the lowest cost path with success probability of at least p_{min}?
Robust Combination of Local Controllers

- Lowest Cost Path with success probability of at least p_{min}
- Dynamic programming algorithm:
 - Discretize $[p_{\text{min}}, 1]$ into $S+1$ values;
 - $q(s) = (p_{\text{min}})s/S$, $s = 0, \ldots, S$
 - $V(s, x_i)$: minimum cost-to-go starting at x_i, reaching goal with success probability at least $q(s)$.

High Success Probability Low Success Probability
Robust Combination of Local Controllers

- Similar notion of local controllers than our approach
 - Local controllers are assumed to be known as prior knowledge
 - Also assume knowledge of the environment
- Only used in an offline formulation
 - How do I explore the graph?
 - How do I sample the nodes efficiently?
 - What do I do if transition is not successful?
- Stochastic Environments, high probability paths
 - We want to concentrate on (quasi)-deterministic environments, and find optimal paths
Graph Based RL

- Our Approach:
 - Used for quasi-deterministic continuous control problem
 - Uses continuous state and action spaces and continuous time
 - Tackles 2 questions:
 - How do I explore the graph?
 - How do I sample the nodes efficiently?
 - Main Question: How do I explore the state space most efficiently to find good solutions from the start node x_S to the goal node x_G?
Graph Based RL: Successor States

- Sampling the nodes
 - The graph is built in an online process
 - 2 different goals:
 - Extend the graph in unknown regions which are likely to lead to the goal
 - Increase the density of nodes regions which are likely to contain the optimal path
 - At each step, we sample potential successor states s_k
 - Applying random actions for a random amount of time
 - From the current node x_t
 - From random nodes x_i
 - Successor States are included as terminal node with an estimated value \hat{V} in the graph
 - Enforces Directed Exploration
Graph Based RL: Successor States

- Estimating the Value of Successor States
 - Additional prior knowledge can be used:
 - Optimistically estimating the Value at successor state x
 - Costs of direct path to goal
 - If goal is not known:
 - Use constant, maximal possible value of the MDP.
 - Additionally use knowledge of neighbored nodes
 - Nodes far away / High uncertainty: use optimistic value
 - Many nodes in neighborhood: use weighted sum of values
Graph Based RL: Successor States

- Gaussian Process
 - Gives us a mean estimate and a variance estimate
 - Variance estimate ~ node density
 - Use optimistic Value as prior mean
 - Posterior: Use knowledge of neighbored nodes

- Squared Exponential Kernel: \(k(x, x') = \exp \left(-\frac{d(x, x')^2}{2\sigma^2} \right) \)
- Sigma... Kernel Width: Specified Sampling Resolution
Graph Based RL: Successor States

- **Gaussian Process:**
 - Use mean as estimated Value
 - Variance/Uncertainty of estimate tells us whether we can produce new information with successor node s_k
 - Only use successor states where the variance is higher than $\theta_{\text{min}}^{\text{exp}}$
 - $\theta_{\text{min}}^{\text{exp}}$ should be lowered over time

- **Successor state** is added to the graph if the agent visits the corresponding terminal node
 - We have to delete all remaining successor states in the neighborhood because their value and variance estimates are not valid any more…

- We calculate all local connections from the new node and add them to the graph

- Cost estimate: Time needed to accomplish connection
 - Without knowledge of any obstacles
 - Real costs are not known until we visit the edge
Creating/Exploring the Graph

- We have to explore:
 - Successor Nodes
 - Creating new nodes is very expensive in the sense of exploration
 - Each node adds several new edges we have to explore…
 - Unvisited edges
 - We can estimate costs coming from the time needed for the transition from the local controllers
 - Real costs are unknown.
Creating/Exploring the Graph

- Exploration edges:
 - Transitions to virtual final states
 - Final value \hat{V}:
 - Successors: Estimated Values
 - Unknown Edges: Value of the end state of the transition

- Which exploration edges should we explore?
 - Edges, that are likely to be in the neighborhood of the optimal path from x_S to x_G
 - Exploration score:
 - Costs from start state + estimated costs of edge + final value \hat{V}
 - $\sigma(e) = c(x^S, x') + \hat{r}(e) + \hat{V}$
 - We use only known edges for c and V, otherwise there is always a low cost path to an exploration edges (usually not all edges have been explored)
Creating/Exploring the Graph

- Exploration Score of Successor Nodes
Creating/Exploring the Graph

- Exploration policy π^{exp}
 - Use all edges (in order to explore unknown edges)
 - Calculate the maximum exploration score σ_{max} of all end transitions (including the transition to the goal state)
 - Only activate the final transitions which have a higher exploration score than $\sigma_{\text{max}} - \theta_\sigma$

- Interpolation between:
 - Greedy Search: $\theta_\sigma = \infty$
 - Always explore towards the goal
 - Creates a more uniform distribution of nodes
 - Wastes time to go to goal which could be used for exploration
 - A*-Search: $\theta_\sigma = 0$
 - Always go to the best looking exploration target
 - May need to traverse the state space many times
Exploring the graph

- Different θ_σ

- Plots for summed online rewards and time needed to get to a certain optimal performance
Building/Exploring the graph

- Building process of the graph

20 Episodes

100 Episodes
Value: -13.5

500 Episodes
Value: -9.5
Results:

- PuddleWorld: Comparison to prioritized sweeping/uniform sampling of the nodes
Results:

- Armreaching Task under static stability constraints of the CoM
 - Optimistic distance to goal is not known
 - We can use a heuristic that uses
Extensions and Open Questions

- How does it scale to high-dimensional problems?
 - Results are still missing
 - Should be possible for static problems…
- Dynamic Environments / More complex controllers
 - Much more complex local controllers
 - In particular for more dimensions
 - Agent has to reach the position and velocity for each dimension in the same time. Quite restrictive…
 - Still works for 2 dimensions… more dimensions is critical
- Additional Problem:
 - Valid neighborhood of each node (where does the controller still work?)
 - We have to do additional analysis here…
 - Can we somehow decouple the dimensions, relief the restriction of reaching the target-state exactly in the same time?
- Application: Robot Balancing task with Motion Primitives
Extensions and Open Questions

- Dynamic Environments:
 - Local Controllers

- Both dimensions are controlled to reach the end point in the same amount of time
Extensions and Open Questions

- **Uncertainty:**
 - Use robust controllers (feedback)
 - Use stochastic graphs

- **Integrating sensory data**
 - Sensory data can’t be directly controlled by a local controller
 - Possible Solution: Use simple, instanced based Function approximation in the nodes

- **Pruning of the graph:**
 - Many nodes which have been created are not needed any more later in the exploration/optimization process
 - Useful in particular for high dimensional problems to tackle the curse of dimensionality
 - Use more sophisticated node optimization techniques
 - Generate gradient information at each nodes by simulation

- **Non-linear, complex dynamical models**
 - Can the local controllers also be learnt?
 - In any case... a very hard task
Extensions and Open Questions

- Reward Prediction
 - How do we decrease the number of edges we have to explore?
 - Generalize the rewards of the edges
 - If we have a more accurate estimate of the reward of an edge, less exploration edges have to be visited
 - First approach: ambiguous results, needs more investigation...

![Diagram](image)
Conclusions

- Sample-Based Methods have better convergence properties
- Graph-Based RL:
 - Extension of the [Guestrin01] approach to online learning.
 - Builds the graph online in an efficient manner
- Graph-Based RL can produce high-quality policies which handle continuous actions and continuous time steps
- Outperforms parametric RL methods in learning speed and quality of the learnt policy considerably.
- There are still a few open questions/problems …
- Computationally quite expensive…