A COUNTABLE BASIS FOR Σ^1_2 SETS
AND RECURSION THEORY ON \aleph_1

WOLFGANG MAASS

ABSTRACT. Countably many \aleph_1-recursively enumerable sets are constructed from which all the \aleph_1-recursively enumerable sets can be generated by using countable union and countable intersection. This implies under $V = L$ that there exists as well a countable basis for Σ^1_n sets of reals, $n > 2$. Further under $V = L$ the lattice $\mathcal{E}^*(\aleph_1)$ of \aleph_1-recursively enumerable sets modulo countable sets has only \aleph_1 many automorphisms.

Let \mathcal{E} denote the lattice of recursively enumerable (r.e.) sets under inclusion, and let \mathcal{E}^* denote the quotient lattice of \mathcal{E} modulo the ideal of finite sets. Both structures have been extensively studied (see e.g. the survey by Soare [5]). In recent years research has concentrated on the existence of automorphisms and the decidability of the elementary theory.

Analogous questions arise in α-recursion theory for admissible ordinals α. Here one studies the lattice $\mathcal{E}(\alpha)$ of α-r.e. subsets of α and the quotient lattice $\mathcal{E}^*(\alpha)$ modulo the ideal of α^*-finite sets (see e.g. the survey by Lerman [2]). A set is α-r.e. iff it is definable over L_α by some Σ_1 formula with parameters. A function is α-recursive iff its graph is α-r.e. A set is α^*-finite iff every α-r.e. subset of it is α-recursive. For simplicity we assume $V = L$ in the first part of this paper where we study \aleph_1-r.e. sets.

Lachlan has proved the following basic result about automorphisms of \mathcal{E}^* (see Soare [4]): There are 2^{\aleph_0} automorphisms of \mathcal{E}^*. Sutner [7] has noticed that one can use Lachlan's construction in order to show that for all countable admissible α there are 2^α many automorphisms of $\mathcal{E}^*(\alpha)$. The argument breaks down for $\alpha = \aleph_1$ despite the fact that \aleph_1 is like ω a regular cardinal. Observe that in the case $\alpha = \aleph_1$ the α^*-finite sets are just the countable sets. We show in this paper that there are in fact only \aleph_1 (instead of 2^{\aleph_1}) many automorphisms of $\mathcal{E}^*(\aleph_1)$.

DEFINITION 1. We say that a class Γ of sets has a countable basis ($A_n)_{n \in \omega}$ if $\{A_n|n \in \omega\} \subseteq \Gamma$ and Γ is the closure of $\{A_n|n \in \omega\}$ under countable unions and intersections.

Observe that the class of \aleph_1-r.e. sets is closed under countable unions and intersections.

Received by the editors June 10, 1980.

1980 Mathematics Subject Classification. Primary 03D60; Secondary 03E15, 03D25.

Key words and phrases. α-recursively enumerable sets, automorphisms of r.e. sets, countable unions and intersections of Σ^1_2-sets.

1During preparation of this paper the author was supported by the Heisenberg Programm der Deutschen Forschungsgemeinschaft, West Germany.

© 1981 American Mathematical Society 0002-9939/81/0000-0271/02.00
THEOREM 2. The class of \(\mathbb{N}_1 \)-r.e. sets has a countable basis \((A_n)_{n \in \omega} \). In fact every \(\mathbb{N}_1 \)-r.e. set can be written as a countable intersection of countable unions of countable intersections of the sets \((A_n)_{n \in \omega} \).

PROOF. Take a universal \(\mathbb{N}_1 \)-r.e. set \(W \) such that \((W_e)_{e \in \mathbb{N}_1} \) is an enumeration of all \(\mathbb{N}_1 \)-r.e. sets, where \(W_e := \{ \delta \langle e, \delta \rangle \in W \} \). Further take an \(\mathbb{N}_1 \)-recursive function \(C \) from \(\mathbb{N}_1 \) into \(\wp(\mathbb{N}) \) such that \(\{ C(e) | e \in \mathbb{N}_1 \} \) is a family of almost disjoint sets (i.e. every \(C(e) \) is infinite and \(C(e) \cap C(e') \) is finite for \(e \neq e' \), see e.g. Kunen [1]).

We construct first countably many \(\mathbb{N}_1 \)-r.e. sets \((A_n)_{n \in \omega} \) such that for every \(e \in \mathbb{N}_1 \) with \(e \geq \omega \)

\[
W_e - e = \left(\bigcup_{j \in \omega} \left(\bigcap_{n \in \omega} \{ A_n | n \in C(e) \land n > j \} \right) \right) - e.
\]

The sets \((A_n)_{n \in \omega} \) are constructed simultaneously in \(\mathbb{N}_1 \) many steps. At step \(\gamma \) we determine for every \(n \) on which fact it depends whether or not \(e \) is enumerated in \(A_n \).

We assign in an \(\mathbb{N}_1 \)-recursive way to every \(e \in \mathbb{N}_1 \) a function \(p_e \in L_n \) which maps \(\omega \) one-one onto \(\gamma + 1 \). For \(e < \gamma \) one might consider \(p_e^{-1}(e) \) as the priority of the equality \(W_e = \bigcup_{j < \omega} \left(\bigcap_{n \in \omega} \{ A_n | n \in C(e) \land n > j \} \right) \) at step \(\gamma \). We change priorities at every step because it is important that the priority list is never longer than \(\omega \).

Step \(\gamma \) (\(\omega < \gamma < \mathbb{N}_1 \)). For \(n \in C(p_{\gamma}(0)) \) we determine that \(\gamma \) is put in \(A_n \) if and only if \(\gamma \) is enumerated in \(W_{p_{\gamma}(0)} \). For \(j > 0 \) and \(n \in (C(p_{\gamma}(j)) - \bigcup_{j < \gamma} C(p_{\gamma}(j))) \) we determine that \(\gamma \) is put in \(A_n \) if and only if \(\gamma \) is enumerated in \(W_{p_{\gamma}(j)} \). For \(n \in \omega - \bigcup_{e \leq \gamma} C(e) \) it does not matter whether we put \(\gamma \) in \(A_n \) or not.

It is obvious from the construction that the sets \(A_n \) are \(\mathbb{N}_1 \)-r.e. Further for \(\omega < e < \gamma \) we have

\[
\gamma \in \bigcup_{j \in \omega} \left(\bigcap_{n \in \omega} \{ A_n | n \in C(e) \land n > j \} \right)
\]

\[
\Leftrightarrow \gamma \in \bigcap_{n \in \omega} \{ A_n | n \in C(e) \land n > \max \{ C(e) \cap \left(\bigcup \{ (C(e')) | p_{\gamma}(e') < p_{\gamma}(e) \} \} \} \}
\]

So far we cannot generate every set \(W_e \) with countable unions and intersections from the basis elements without making mistakes at countably many points. Therefore we add countably many further \(\mathbb{N}_1 \)-r.e. sets to the constructed basis elements \((A_n)_{n \in \omega} \) which enable us to correct these mistakes. Let \(f \) be an \(\mathbb{N}_1 \)-recursive function which maps \(\mathbb{N}_1 \) one-one into \(\wp(\mathbb{N}) \). Define \(\mathbb{N}_1 \)-recursive sets \((R_n)_{n \in \omega} \) by \(\gamma \in R_n : \Leftrightarrow n \in f(\gamma) \). We add then the sets \((R_n)_{n \in \omega} \) and \((\mathbb{N}_1 - R_n)_{n \in \omega} \) to the basis. For every \(\gamma \in \mathbb{N}_1 \) we have

\[
\{ \gamma \} = \bigcap_{n \in f(\gamma)} R_n \cap \bigcap_{n \notin f(\gamma)} (\mathbb{N}_1 - R_n).
\]
Thus we can write every countable set as a countable union of countable intersections and the complement of every countable set as a countable intersection of countable unions of basis elements. Therefore we can correct every mistake on countably many points.

Corollary 3. There are \aleph_1 automorphisms of $\mathcal{P}^*(\aleph_1)$.

Proof. It is obvious that one can construct \aleph_1 many \aleph_1-recursive permutations of \aleph_1 which induce different automorphisms of $\mathcal{P}^*(\aleph_1)$. On the other hand every automorphism Φ of $\mathcal{P}^*(\aleph_1)$ preserves countable unions and intersections. Therefore Φ is completely determined by the values $(\Phi(A_n))_{n\in\omega}$, where $(A_n)_{n\in\omega}$ is a basis for the \aleph_1-r.e. sets and $(A_\ast)_{n\in\omega}$ are the corresponding equivalence classes in $\mathcal{P}^*(\aleph_1)$.

We now leave α-recursion theory and the assumption $V = L$ and turn to descriptive set theory in ZFC. It makes sense to ask whether the classes Σ^1_n and Π^1_n have a countable basis according to Definition 1 since these classes are closed under countable union and intersection. Obviously if Σ^1_n has a countable basis then the complements of the basis elements form a basis for Π^1_n and vice versa. Observe that Δ^1_1, the class of Borel sets, has a countable basis. If one chooses suitable basis elements one can generate the Borel hierarchy without using complementation.

Corollary 4. Assume $n \geq 2$ and $\omega \subseteq L[a]$ for some $a \subseteq \omega$. Then Σ^1_n has a countable basis.

Proof. It is well known that for every $m \geq 1$ a subset of ω is Σ^1_{m+1} iff it is Σ^1_m definable over HC. Under the assumption $\omega \subseteq L[a]$ we have HC = HC$^{L[a]} = L[a]$. Thus the Σ^1_2 sets are just the sets which are Σ_1 definable over $L[a]$ and for $m \geq 2$ the Σ^1_{m+1} sets are just the sets which are Σ_1 definable over $\langle L_n[a], e, P_m \rangle$ with a suitable mastercode P_m. Since one can define a map which maps ω one-one onto \aleph_1, by a Δ_1 definition over $L_n[a]$, it does not matter whether one considers subsets of ω_1 or of \aleph_1. Further the construction of a countable basis in the proof of Theorem 2 works as well for $L_n[a]$ and $\langle L_n[a], e, P_m \rangle$ instead of L_n.

Remark 5. Richard Mansfield has shown [3] that any countably generated σ-algebra consisting entirely of Lebesgue measurable sets does not contain all Σ^1_1 sets. Therefore Σ^1_1 has no countable basis in the sense of Definition 1 if all Σ^1_n sets are measurable. This implies that Σ^1_1 never has a countable basis. Further, Solovay’s model of ZFC where all projective sets are measurable [6] supplies an example where no Σ^1_n has a countable basis.

In addition Mansfield has given a complete answer for Σ^1_2: If Σ^1_2 has a countable basis then $\omega \subseteq L[a]$ for some $a \subseteq \omega$ (to appear).

References