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Abstract. We discuss a task for mobile robots that can only be solved
by robots that are able to learn fast in a completely autonomous fashion.
Furthermore we present technical details of a rather inexpensive robot
that solves this task. Further details and videos of the robot are available
from http://www.igi.tugraz.at/maass/robotik/oskar.

1 Introduction

We will discuss a task for an autonomous robot that requires learning insofar as
a solution of this task by a non-learning robot is inconceivable (at least on the
basis of budget constraints and currently available technology). On the other
hand this task is also too difficult to be solved by a human. People can learn,
but they do not have the mechanical skills which this task requires.

The task had been posed in the form of a student competition (Robotik
2000!) at the Technische Universitit Graz. It can be outlined as follows. A
2 x 5 m white platform — surrounded by a black wall — had been divided by a
black line into a release zome of about 1 m length and a target zone of about 4
m length (see Figure 1).

For each instance of the task one out of a large variety of green colored hills
was placed at an arbitrary position — but at least 40 cm away from all walls —
into the target zone. The hills were formed out of different kinds of hardening
or non-hardening resins. These hills had a relatively rough surface and all kinds
of odd shapes (diameters 30-60 cm), but they all had a round dip on the top of
about 2 cm depth, with a diameters ranging from 8 to 12 cm, see Figure 2. The
task was to accelerate and release a red billiard ball (diameter 5 cm, weight 142
g) in the release zone on the left part of the platform so that it comes to rest
in the dip on top of the hill. To solve this task the ball has to be released with

* This research was partially supported by the Land Steiermark (Austria), project Nr.
P12153-MAT of the FWF (Austria), and the NeuroCOLT project of the EC.

! detailed information about this competition can be found online under http://www.
igi.tugraz.at/maass/robotik
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Fig. 1. Layout of the environment for the task.
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Fig. 2. Two of the hills that were used in the competition

just the right speed v and angle «a. For most hill positions the set of parameters
{a, v) that solved the task was so small that even an experienced human typically
needed 40 or more trials before the first success. The number of trials needed for
a second successful shot was not significantly smaller, indicating that in spite of
all trying a human can solve this task essentially just by chance.

After any unsuccessful trial the robots in the competition had to find the
ball, move it back to the release zone, and initiate the next shot. All of this —
just as the trials themselves — had to be done completely autonomously, using
only on-board sensors, computing devices and power supply (the latter had to
last for at least 45 minutes). The only signals or interventions from the outside
that the robots were allowed to receive were the start-signal at the beginning
(by pushing a button) when the ball had been placed on the initial ball position
marked in Figure 1, and a repeat-signal after a successful trial. The repeat-signal
was given by pushing another button on the robot, and it signaled to the robot



that the ball had been removed by a person from the top of the hill and had
been placed again on the initial ball position, whereas the hill and hill position
had been left unchanged.? The performance measure for the competition was
the total time needed by a robot until he had succeeded three times for the
current hill and hill-position, averaged over a fair number of different hills and
hill-positions.

A direct computation of the proper release values {a,v) from measurements
and other sensory data appears to be not feasible for an autonomous robot based
on presently available technology.® Therefore a robot that was to be successful
in this competition had no choice but to learn from his preceding trials in order
to avoid a time consuming reliance on mere luck.

The winner of the competition was the robot Oskar? (see Fig. 3 and Fig. 4),
designed and built by the second and the third author of this article. For technical

Fig. 3. This is the fast learning robot Oskar. The raised “lasso” for recapturing the ball
is visible on his left. His hammer (visible on his right) has been pulled up, indicating
that Oskar is about to shoot the ball from his ball-holding-bay underneath.

2 We did not encourage that the robots themselves remove the ball from the top of
the hill after a successful trial in order to protect our hills.

3 More precisely: based on technology that can be afforded within the budget limit of
4000 Euro for each robot in the competition.

% see his homepage http://www.igi.tugraz.at/maass/robotik/oskar



details see Appendix B. Oskar usually needs 1-8 trials until the first successful
shot, with a very high success rate for subsequent trials for the same hill in
the same position. Oskar moves via two wheels powered by step motors, with
two Castor wheels in the back. For the control architecture see Figure 7. After
recapturing the ball Oskar repositions himself in the release zone with a precision
of 1 mm and an angular precision of 0.2 degrees, using the visual markers on the
field for localization. As one camera looks othogonally down onto the lines of
the platform from 30 cm above, the accuracy of the repositioning is only limited
by the mechanical precision. This accuracy in repositioning is essential in order
to turn experience from preceding trials into useful advice for the next trial.
Oskar accelerates the ball by hitting it with a hammer that can be pulled up
to variable heights, thereby allowing control over the initial speed v of the ball.
Oskar catches the ball by lowering a flexible “lasso”. He transports the ball back
into the bay in front of the hammer through a suitable body movement initiated
by his two wheels (“hip swing”). Oskar receives sensory input from 2 on-board
cameras and 3 photo sensors. Processing the input of both cameras requires the
whole CPU time. Therefore the management of all actors was outsourced to
a micro controler board, which communicates with the PC via serial interface.
Fig. 7 shows a diagram of Oskar’s control system.

Videos that show the performance of Oskar and competing robots can be
downloaded from the homepage of the robot competition http://www.igi.
tugraz.at/maass/robotik/.

Fig. 4. The robot Oskar shown while recapturing the ball (which is visible just in front
of the robot). The camera in the white housing suspended from the square metal frame
is used for controlling the recapture operation. Oskar’s main camera, which is used for
localization, shot planning, and learning is visible close to the top of the raised “lasso”.



2 Oskar’s Learning Strategies

Oskar uses both a longterm- and a shortterm learning algorithm. In order to
compute the initial speed v for a new instance of the task he uses longterm
learning via a sigmoidal neural network (MLP) with 4 hidden units. The inputs
to the neural network are the coordinates of the 4 corner points of a trapezoid
(see Fig. 5) that approximates the segmented video image of the hill, recorded
from the starting position.
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Fig. 5. A typical hill, as seen by the onboard camera of Oskar. Oskar approximates the
hill by a trapezoid as shown and feeds its 4 corner points into a neural network that
estimates a promising value for the speed v of the first shot.

The neural network is trained via backprop, with training examples provided
by preceding successful trials. The neural network started to make useful predic-
tions after it was trained with data from 60 successful trials (error on training
set: 1.2%). The other parameter « for the first trial on a new hill is simply com-
puted by aiming at the center of the upper horizontal line segment (“Top”) in
the trapezoid that approximates the hill.

Since the first trial of Oskar is likely to succeed only for very simple hills
(e.g., for small hills with a fairly deep dip at the top), the key point of his
operation is his capability to learn via shortterm learning autonomously from
preceding unsuccessful trials for the same instance of the task. For that purpose
Oskar records for each shot the trajectory of the ball, and extrapolates from
it an estimated sequence of positions of the center of the ball (see Fig. 6 for



Fig. 6. Typical trajectories of the (estimated) center of the ball for unsuccessful trials,
as computed by Oskar from his video recording. The trajectories shown were classified
by Oskar into the classes 1,2, and 3. The characteristic feature of a trajectory in class
3 is that it goes up, down, and up again in the immediate vicinity of the hill.

a few examples).® This sequence of points is placed into one of 6 classes that
characterize specific types of failures for a shot:

1. ball went too much to the right

% Oskar records 12 frames per second, yielding typically 3 to 25 frames for the period
when the ball is on the hill.



ball went too much to the left

ball reached the dip, but went through it
ball rolled back from the hill

success

6. anything not fitting into classes 1-5

Gl

If the trial was unsuccessful, Oskar computes with the help of his learning algo-
rithm QUICK-LEARN the parameters («,v) for the next trial from the classi-
fications of the ball trajectories for the last 4 shots and a quantitative measure
for their deviations to the left or right.

There are no theoretical results known to us which could guide the design
of such learning algorithm. There exists some theoretical work on binary search
with errors (see for example [1]; pointers to more recent work can be found in [2]).
However these studies focus on a worst case analysis under the assumption that
the total number of erroneous answers lies below some known bound. In contrast
to that, we need here a learning algorithm that converges very fast on average
in the presence of stochastically distributed errors. Furthermore in our case the
probability that an answer is erroneous is highly non-uniform: it is quite large if
one is already close to the target, but it drops quickly with the distance between
the current query and the unknown target value. To the best of our knowledge,
no theoretical analysis of binary search with errors is known that can be applied
to this more realistic case. In addition, our target vector lies in a 2-dimensional
space. Since it can be shown empirically that for most instances of the task the
solution set does not form a rectangle in this 2-dimensional space, the search
problem cannot be reduced to two independend binary search procedures.

The algorithm QUICK-LEARN merges two simultaneous binary searches,
for the right angle a and the right speed v, where each of these binary search
procedures receives just partially reliable feedback through the classification of
previous trials into the classes 1 to 6. The algorithm QUICK-LEARN proceeds
in all cases except one on the assumption that the parameters a and v can be
determined independently.

The parameters a and v are left unchanged if the last trial was classified into
class 6. Classifications of failures into the classes 1 and 2 are used as feedback for
the binary search for «, and classifications into the classes 3 and 4 are interpreted
as feedback for the binary search for v. This feedback assignment is only partially
justified, since for example a ball that is a little bit too fast and a little bit too
far to the right frequently runs along the distant inner rim of the dip on the hill
and rolls back from the left side of the hill. Such misinterpretation, along with
various other sources of noise and imprecision, causes errors in the binary search
procedures for o and v.

When a trial yields for the first time a trajectory belonging to a class in {1, 2}
or {3,4}, the corresponding parameter a or v is changed by some minimal step
size in the obvious direction. Special precautions are built into QUICK-LEARN
that allow it to recover quickly from erroneous feedback. The step size of the
relevant binary search procedure is halved - like in the classical binary search
procedure - only if the last two trials have produced trajectories that belong



to classes that reflect complementary errors for the parameter in question, like
the classes 1 and 2 for «, or the classes 3 and 4 for v. Whenever the trajectory
switches between the groups of classes {1,2} and {3,4}, the binary search is
switched to the other parameter (with a step size equal to the last value when
that other binary search had been interrupted). The step size for binary search
is left unchanged if the trajectories for the last 2 or 3 trials all fall into the
same class. If the last 4 trials have produced trajectories that all fall into the
same class in {1,2, 3,4}, the corresponding parameter is not only moved into
the appropriate direction, but in addition the step size is doubled. Furthermore
after 4 or more trials that yielded trajectories in one of the classes 3 or 4, not
only the speed v is changed, but also the angle « is changed by some minimal
step size in the direction which is suggested by a quantitative measure dev that
evaluates left /right deviations of the ball that were caused by the hill (for details
see the pseudocode of the algorithm QUICK-LEARN given in Appendix A).

3 Discussion

In contrast to many other applications of machine learning in robotics, where
robots learn to avoid obstacles or other functions that can also be solved without
learning, the robot Oskar that we have discussed in this article is the result of an
evolutionary challenge where learning was indispensable to solve the given task.
This given task happened to be one which is too difficult for humans in spite
of their learning skills, because they are inferior to robots with regard to their
precision and reproducibility of movements. Hence one may argue that Oskar
solves a task that can neither be solved by non-learning robots nor by humans,
thereby demonstrating the tremendous potential of autonomous adaptive robots.

On a more abstract level, the task that is solved by Oskar requires a very
fast search in a multi-dimensional space for a parameter vector that provides a
solution of the current instance of the task. This search has to be carried out
without any human supervision, by computing autonomously suitable feedback
for learning from the sensory input of the robot. Tasks of a similar nature arise
in many application areas where one needs to procede by trial und error, for
example in the area of construction, repair, or rescue. Many of these tasks arise
in environments that are inaccessible or too hostile for humans, and therefore
are interesting application areas for robotics. In the area of medical robotics
miniature robots that learn fast to solve a task of skill in an autonomous fashion
may potentially be useful for carrying out surgical procedures inside a human
body that are so delicate that human supervision is too unreliable.

The robot Oskar that we have discussed in this article has become one of the
longest serving autonomous adaptive robots that are known to exist. He has been
running continuously 9 hours per day (for permanently changing hills and hill-
positions) during the 6 months of a major exhibition® in Graz (Austria), during
which Oskar delivered 31.108 shots (6.127 of which were successful). Hence this

5 Steiermiirkische Landesausstellung 2000, entitled comm.gr2000az, curated by H.
Konrad and R. Kriesche. Oskar is scheduled to move in the summer of 2001



robot demonstrates that autonomous learning capabilities can be implemented
in a mobile robot in a stable and reliable manner, at a very low cost.”
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Appendix A: Pseudocode for the Learning Algorithm
QUICK-LEARN

Definitions:

last:
last[0]:
dev:

delta_a:

delta_v:

a_min:
v_min:

array with the classifications for the last 4 trajectories
classification of the immediately preceding trajectory
horizontal deviation at the hill of the last trajectory®

current step size in binary search for angle

(initial value = 1/6 of the width of the hill at the base)

current step size in binary search for velocity

(initial value = 1/20 of the value suggested by the neural network)

parameter angle
parameter velocity

minimal step size in search for angle?
minimal step size in search for velocity?3

delta_a is never allowed to assume values less than a_min.
delta_v is never allowed to assume values less than v_min.

to the permanent collection of the Ars Electronica Center in Linz (Austria), see
http://wuw.aec.at.

" The total cost of the components of Oskar lies below 3000 Euro. The only replace-
ment parts that were needed during his 6 months of continuous performance was a
new set of tires.



QUICK_LEARN(classes last[4], dev)

switch(last[0])

{

class_1:

if (all last == class_1) // last 4 trajectories too far right:
delta_a *= 2 // double step size for angle

else

if (last[1] == class_2) // last 2 trajectories in classes 1
delta_a /= 2 // and 2: halve step size for angle

delta_a = max(delta_a, a_min) // step size not smaller than minimum
// step size

if (last[1] == class_5) // failure (of class 1) after success
a -= a_min* // (class 5): minimal change for
// angle
else
a -= delta_a
class_2:
if (all last == class_2) // last 4 trajectories too far left:
delta_a *= 2 // double step size for angle
else
if (last[1] == class_1) // last 2 trajectories in classes 1 and 2:
delta_a /= 2 // halve step size for angle
delta_a = max(delta_a, a_min) // stepsize not smaller than minimum step size
if (last[1] == class_5) // failure (of class 2) after success:
a += a_min // minimal change for angle
else

a += delta_a

class_3:

if (all last == class_3) // last 4 shots too fast (class 3):

a += sign(dev) * a_min // additional minimal change of angle®

if (last[1] == class_4) // last 2 trajectories in classes 3 and 4:
delta_v /= 2 // halve step size for velocity

delta_v = max(delta_v, v_min) // step size not smaller than minimum step size

if (last[1] == class_b) // failure (of class 3) after success:

v -= v_min // minimal change of velocity

else

v —-= delta_v // for all other classes: change with stepsize

class_4:



if (all last == class_4) // last 4 shots too slow (classé4):

a += sign(dev) * a_min // additional minimal change of angle®

if (last[1] == class_3) // last 2 trajectories in classes 3 and 4:
delta v /= 2 // halve step size for velocity

delta_v = max(delta_v, v_min) // step size not smaller than minimum step size
if (last[1] == class_5) // failure (of class 4) after success:

v += v_min // minimal change of velocity

else

v += delta_v // for all other classes:

// change with step size

class_b:
a=a // last shot was successful:
vV=v // leave parameters unchanged
store_example // save angle, velocity and hill
// features as training example
// for the longterm neural
// network learning algorithm
class_6:
a=a // leave parameters unchanged,
v=v // no information extracted

Remarks:

1 dev is the average of the horizontal deviations of points on the trajectory while
the ball was on the hill, from a linear extrapolation of the initial segment of the
trajectory defined by the points of the trajectory just before the ball reached the
hill. Thus dev essentially measures the horizontal deviation of the ball caused
by the hill.

2 The minimum step size for the angle is one step of one of the two driving
motors. The direction of the change determines which motor has to move.

3 The minimal step size for the velocity is one step of the stepping motor that
pulls up the hammer.

4 Angles and angle changes to the left are counted negativ, angles and angle
changes to the right are counted positiv. Angle 0 is defined by the straight line
to the middle of the top of the hill (see Fig. 5).

5 This rule prevents the algorithm to get stuck in just changing the velocity.
Because of this rule one cannot view the algorithm as an implementation of 2
independent binary search procedures.



Appendix B: Technical Data of the Learning Robot
“Oskar”

Processor board

Single-Board-PC 586LCD/S by Inside Technology AMD 586 @ 133 MHz,
32 MB Ram, ISA and PC 104 Bus runs under DOS and the DOS-Extender
DOS4GW by Tenberry

2,5 Laptop-Harddisc with 400 MB memory

Image processing

b/w-framegrabber pcGrabber-2plus by phytec with four camera inputs, ISA
Bus color-CCD-camera VCAM 003 by phytec for ball/hill-analysis, no-name-
wide-angle b/w-camera for navigation and obstacle avoidance

Motor /servo-steering

Risc-Microcontroller AT90S8515 by Atmel,

8kB integrated flash-program-memory

running under operating system AvrX by Larry Barello

Driving
two 1,8° stepping motors in differential drive

Shooting
one 0,9° stepping motor + hammer (250g)

Power Supply
High Performance NiMH-Accu with 2,6Ah capacity and 12V. Two DC/DC
Converters provides the also needed 5V and -12V.
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Fig. 7. Block diagram of Oskar’s control system. It was designed to be simple and
inexpensive. The main part is a low power Single Board PC. All control tasks except
actor control are implemented on this PC. The actor control was sourced out to a
microcontroller, to release the PC. The main sensors are two cameras connected to a
4-channel frame grabber on the ISA-Bus. To avoid an extra I/O-Module, the 3 photo
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