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Abstract

We analyze in this article the significance of the edge of chaos for real-time computations in neural microcircuit models consisting of
spiking neurons and dynamic synapses. We find that the edge of chaos predicts quite well those values of circuit parameters that yield maximal
computational performance. But obviously it makes no prediction of their computational performance for other parameter values. Therefore,
we propose a new method for predicting the computational performance of neural microcircuit models. The new measure estimates directly the
kernel property and the generalization capability of a neural microcircuit. We validate the proposed measure by comparing its prediction with direct
evaluations of the computational performance of various neural microcircuit models. The proposed method also allows us to quantify differences
in the computational performance and generalization capability of neural circuits in different dynamic regimes (UP- and DOWN-states) that have
been demonstrated through intracellular recordings in vivo.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

What makes a neural microcircuit computationally power-
ful? Or more precisely, which measurable quantities could ex-
plain why one microcircuit C is better suited for a particular
family of computational tasks than another microcircuit C ′?
Rather than constructing particular microcircuit models that
carry out particular computations, we pursue in this article a
different strategy, which is based on the assumption that the
computational function of cortical microcircuits is not fully ge-
netically encoded, but rather emerges through various forms of
plasticity (“learning”) in response to the actual distribution of
signals that the neural microcircuit receives from its environ-
ment. From this perspective the question about the computa-
tional function of cortical microcircuits C turns into the ques-
tions:

(a) What functions (i.e. maps from circuit inputs to circuit
outputs) can particular neurons (“readout neurons”, see
below) in conjunction with the circuit C learn to compute.
∗ Corresponding author. Tel.: +43 316 873 5824; fax: +43 316 873 5805.
E-mail addresses: legi@igi.tugraz.at (R. Legenstein), maass@igi.tugraz.at

(W. Maass).

0893-6080/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2007.04.017
(b) How well can readout neurons in conjunction with the
circuit C generalize a specific learned computational
function to new inputs?

We propose in this article a conceptual framework and
quantitative measures for the investigation of these two
questions. In order to make this approach feasible, in spite
of numerous unknowns regarding synaptic plasticity and the
distribution of electrical and biochemical signals impinging on
a cortical microcircuit, we make in the present first step of this
approach the following simplifying assumptions:

1. Particular neurons (“readout neurons”) learn via synaptic
plasticity to extract specific information encoded in the
spiking activity of neurons in the circuit.

2. We assume that the cortical microcircuit itself is highly re-
current, but that the impact of feedback that a readout neuron
might send back into this circuit can be neglected.1
1 This assumption is best justified if such readout neuron is located for
example in another brain area that receives massive input from many neurons in
this microcircuit and only has diffuse backwards projection. But it is certainly
problematic and should be addressed in future elaborations of the present
approach.
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3 Membrane voltage Vm modeled by τm
dVm

dt = −(Vm − Vresting) + Rm ·

(Isyn(t) + Ibackground + Inoise), where τm = 30 ms is the membrane time
constant, Isyn models synaptic inputs from other neurons in the circuits,
Ibackground models a constant unspecific background input and Inoise models
3. We assume that synaptic plasticity of readout neurons en-
ables them to learn arbitrary linear transformations. More
precisely, we assume that the input to such readout neuron
can be approximated by a term

∑n−1
i=1 wi xi (t), where n − 1

is the number of presynaptic neurons, xi (t) results from the
output spike train of the i th presynaptic neuron by filtering it
according to the low-pass filtering property of the membrane
of the readout neuron,2 and wi is the efficacy of the synaptic
connection. Thus wi xi (t) models the time course of the con-
tribution of previous spikes from the i th presynaptic neuron
to the membrane potential at the soma of this readout neu-
ron. We will refer to the vector x(t) as the circuit state at
time t . Note that the readout neurons do not have access to
the analog state of the circuit neurons, but only to the filtered
version of their output spike trains.

Under these unpleasant but apparently unavoidable simpli-
fying assumptions we propose in Sections 4 and 5 new quan-
titative criteria based on rigorous mathematical principles for
evaluating a neural microcircuit C with regard to questions (a)
and (b). We will compare in Sections 6 and 8 the predictions of
these quantitative measures with the actual computational per-
formance achieved by 102 different types of neural microcircuit
models, for a fairly large number of different computational
tasks. All microcircuit models that we consider are based on
biological data for generic cortical microcircuits (as described
in Section 2), but have different settings of their parameters.
It should be noted that the models for neural circuits that are
discussed in this article are subject to noise (in the form of ran-
domly chosen initial values of membrane voltages, and in the
form of biologically realistic models for background noise, see
the precise definition in Section 2, and exploration of several
noise levels in Section 8). Hence the classical theory for compu-
tations in noise-free analog circuits (see, e.g., Siegelmann and
Sontag (1994)) cannot be applied to these models. Rather, the
more negative results for computations in analog circuits with
noise (see, e.g., Maass and Orponen (1998), Maass and Sontag
(1999)) apply to the circuit models that are investigated in this
article.

For the sake of simplicity, we consider in this article
only classification tasks, although other types of computations
(e.g. online computations where the target output changes
continuously) are at least of equal importance for neural
systems. But actually, a theoretical analysis of the capability
of neural circuits to approximate a given online computation
(that maps continuous input streams onto continuous output
streams), see Maass, Natschläger, and Markram (2002) and
in more detail Maass and Markram (2004), has shown that
the so-called separation property of circuit components is a
necessary (and in combination with a condition on the readout
also sufficient) condition for being able to approximate a given
online computation that maps continuous input streams onto
continuous output streams with fading memory. Hence one
2 One can be even more realistic and filter it also by a model for the short
term dynamics of the synapse into the readout neuron, but this turns out to
make no difference for the analysis proposed in this article.
can view the computational tasks that are considered in this
article also as tests of the separation property of small generic
circuits of neurons, and hence of their capability to serve as
a rich reservoir of “basis filters” in the context of that theory,
and hence as subcircuits for online computing with continuous
output streams.

Several results of this article had previously been sketched
in Maass, Legenstein, and Bertschinger (2005).

2. Models for generic cortical microcircuits

Our empirical studies were performed on a large variety of
models for generic cortical microcircuits. All circuit models
consisted of leaky-integrate-and-fire neurons3 and biologically
quite realistic models for dynamic synapses.4 Neurons (20% of
which were randomly chosen to be inhibitory) were located on
the grid points of a 3D grid of dimensions 6×6×15 with edges
of unit length. The probability of a synaptic connection from
neuron a to neuron b was proportional to exp(−D2(a, b)/λ2),
where D(a, b) is the Euclidean distance between a and b, and
λ is a spatial connectivity constant. Synaptic efficacies w were
chosen randomly from distributions that reflect biological data
(as in Maass et al. (2002)), with a common scaling factor Wscale.

Linear readouts from circuits with n − 1 neurons were
assumed to compute a weighted sum

∑n−1
i=1 wi xi (t) + w0 (see

Section 1). In order to simplify notation we assume that the
vector x(t) contains an additional constant component x0(t) =

1, so that one can write w · x(t) instead of
∑n−1

i=1 wi xi (t) + w0.
In the case of classification tasks we assume that the readout
outputs 1 if w · x(t) ≥ 0, and 0 otherwise.

In order to investigate the influence of synaptic connectivity
on computational performance, neural microcircuits were
drawn from the distribution of circuits discussed above for 10
different values of λ (which scales the number and average
distance of synaptically connected neurons) and 9 different
values of Wscale (which scales the efficacy of all synaptic
connections). 20 microcircuit models C were drawn for each
of these 90 different assignments of values to λ and Wscale.
For each circuit a linear readout was trained to perform one
(randomly chosen) out of 280 possible classification tasks on
noisy variations u of 80 fixed spike patterns as circuit inputs u.
See Fig. 1 for two examples of such spike patterns. The target
performance of a linear readout with any such circuit was to
output at time t = 200 ms the class (0 or 1) of the spike pattern
from which the preceding circuit input had been generated (for
some arbitrary partition of the 80 fixed spike patterns into two
classes). Each spike pattern u consisted of 4 Poisson spike
noise in the input. The membrane resistance Rm was chosen as 1 M� in all
sections except for Section 8.

4 Short term synaptic dynamics was modeled according to Markram, Wang,
and Tsodyks (1998), with distributions of synaptic parameters U (initial release
probability), D (time constant for depression), F (time constant for facilitation)
chosen to reflect empirical data (see Maass et al. (2002), for details).
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Fig. 1. Performance of different types of neural microcircuit models with linear readouts for classification of spike patterns. (a) In the top row are two examples
of the 80 spike patterns that were used as templates for noisy variations (each consisting of 4 Poisson spike trains at 20 Hz over 200 ms), and in the bottom row
are examples of noisy variations (Gaussian jitter with SD 10 ms) of these spike patterns which were used as circuit inputs. (b) Fraction of examples (for 500 test
examples) for which the output of a linear readout (trained by linear regression with 2000 training examples) agreed with the target classification. Results are shown
for 90 different types of neural microcircuits C with λ varying on the x-axis and Wscale on the y-axis (20 randomly drawn circuits and 20 target classification
functions randomly drawn from the set of 280 possible classification functions were tested for each of the 90 different circuit types, and resulting correctness-rates
were averaged). Circles mark three specific choices of λ, Wscale-pairs for comparison with other figures, see Fig. 3. The standard deviation of the result is shown in
the inset on the upper right. (c) Average firing rate of the neurons in the same circuits and with the same inputs as considered in (b). One sees that the computational
performance becomes best at relatively low average firing rates around 4 Hz (see contour line), and that the region of best performance cannot be characterized in
terms of the resulting average firing rate.

Fig. 2. UP- and DOWN-states in neural microcircuit models. Membrane potential (for a firing threshold of 15 mV) of two randomly selected neurons from circuits
in two parameter regimes labeled as UP- and DOWN-states, as well as spike rasters for the same two parameter regimes (with the actual circuit inputs shown
between the two rows).
trains over 200 ms. Details on this classification task are given
in Appendix A.1. Performance results are shown in Fig. 1(b)
for 90 different types of neural microcircuit models together
with a linear readout. Fig. 1(c) shows for comparison the
resulting average firing rates for the same circuits and inputs,
demonstrating that it would be impossible to characterize the
regions of best computational performance in terms of the
resulting firing rates. We will refer to this setup in Sections 3–6.

We will investigate in Section 8 a completely different
parametrization of regimes of neural circuits that allows us to
switch their dynamics between UP- and DOWN-states. These
dynamic regimes, which have been identified in numerous
intracellular recordings in vivo, differ with regard to the mean
and variance of the membrane potential and the membrane
conductance of the neurons in the circuit. The UP-state is
assumed to result from a massive bombardment by background
synaptic inputs in the awake state of the organism. We
have simulated these different dynamic regimes in circuits
of size 3 × 3 × 15 by varying the membrane resistance
Rm , the background current Ibackground, and the noise current
Inoise in parallel according to Destexhe, Rudolph, and Pare
(2003). Fig. 2 shows that one can simulate in this way
different dynamic regimes of the same circuit where the
time course of the membrane potential qualitatively matches
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data from intracellular recordings in UP- and DOWN-states
(see, e.g., Anderson, Lampl, Reichova, Carandini, and Ferster
(2000), Destexhe et al. (2003), Shu, Hasenstaub, Badoual, Bal,
and McCormick (2003)). We will discuss in Section 8 the
prediction and the actual computational performance of circuits
with linear readouts in 13 different regimes of the parameters
Rm , Ibackground, Inoise.

We would like to point out that in this set-up the performance
of the circuit with the best parameter setting is still far from
optimal, especially for the task considered in Fig. 8(f). The
reason is that the size of the circuits that we consider in this
article is relatively small in comparison with the complexity of
the computational tasks. Empirical tests (see Fig. 10 in Maass,
Natschläger, and Markram (2004) and Fig. 6 in Häusler and
Maass (2007)) have shown that the computational performance
of models for generic cortical microcircuits tends to increase
with circuit size for computational tasks of this type. However
since our focus is in this article on the gradient of computational
performance, rather than on its absolute level, the investigation
of relatively small circuits appears to be particularly instructive.

3. The edge of chaos in neural microcircuit models

A recurrent neural circuit is a special case of a
dynamical system. Related dynamical systems have been
studied extensively in various contexts in physics, e.g. cellular
automata (Langton, 1990; Packard, 1988), random Boolean
networks (Kauffman, 1993), and Ising-spin models (networks
of threshold elements) (Derrida, 1987). By changing some
global parameters of the system, e.g. connectivity structure
or the functional dependence of the output of an element on
the output of other elements, one can change the dynamics
of the system from ordered to chaotic. The cited studies
suggest that dynamical systems achieve optimal computational
capabilities if their dynamics lies on the transition boundary
between order and chaos. This transition boundary was termed
the “edge of chaos”. Later, it was argued that the region
of best computational performance should depend on the
task at hand. Therefore, best computational power does not
necessarily correspond to the edge of chaos (Mitchell, Hraber,
& Crutchfield, 1993). We will show how to include some task-
specificity in the analysis of neural circuits in Sections 4 and
5. Almost all preceding work on computations in dynamical
systems focused on the autonomous case, i.e. on the evolution
from some initial state without any external influences (except
for the initial state of the system). From the computational point
of view, such autonomous systems represent computations
on batch input, comparable to the batch processing by
Turing machines. However, computations in cortex have a
strong online flavor, i.e. inputs are time series and constantly
impinging onto the circuit. Networks of threshold elements
with online input were recently considered in Bertschinger and
Natschläger (2004). In this study, a network with online input is
called chaotic if arbitrary small differences in a (initial) network
state x(0) are highly amplified and do not vanish. In contrast,
an ordered network forgets the initial network state x(0) very
quickly and the current network state x(t) is determined largely
by the current input. The results of this study also suggest that
for online computing also superior computational performance
can be found in systems with dynamics located at the edge of
chaos. We refer to Legenstein and Maass (2007) for a review of
this preceding work about the relationship between the edge of
chaos and the computational performance of various types of
dynamical systems.

An analysis of the temporal evolution of state differences
that result from fairly large input differences cannot identify
those parameter values in the map of Fig. 1(b) that yield
circuits which have (in conjunction with a linear readout) large
computational performance (Maass et al., 2005). The reason
is that large initial state differences (as they are typically
caused by different spike input patterns) tend to yield for most
values of the circuit parameters nonzero state differences not
only while the online spike inputs are different, but also long
after wards when the online inputs agree during subsequent
seconds (even if the random internal noise is identical in both
trials). But if one applies the definition of the edge of chaos
via Lyapunov exponents (see Kantz and Schreiber (1997)),
that calls for the analysis of state differences that result from
infinitesimal (or at least very small) input differences, the
resulting edge of chaos lies for the previously introduced type
of computations (classification of noisy spike templates by a
trained linear readout) in the region of the best computational
performance (see the map in Fig. 1(b), which is repeated for
easier comparison in Fig. 3(d)). According to this definition
one looks for the exponent µ ∈ R which provides through the
formula

δ1T ≈ δ0 · eµ1T

the best estimate of the state separation δ1T at time 1T after
the computation was started in two trials with an “infinitesimal”
initial state difference δ0. We generalize this analysis to the
case with online input by choosing exactly the same online
input (and the same random noise) during the intervening time
interval of length 1T for the two trials which start with a
small initial state difference δ0. We then average the resulting
state differences δ1T over many random choices of such online
inputs (and internal noise). As in the classical case with offline
input it turns out to be essential to apply this estimate for
δ0 → 0, since δ1T tends to saturate when 1T grows for each
fixed value of δ0. The saturation occurs because the distance
between any two circuit states is bounded in practice. This can
be seen in Fig. 3(a), which shows outcomes of this experiment
for a δ0 that results from moving a single spike that occurs in
the online input at time t = 1 s by 0.5 ms. This experiment was
repeated for 3 different circuits with parameters chosen from
the 3 locations marked on the map in Fig. 3(c). By determining
the best fitting µ for 1T = 1.5 s for 3 different values of
δ0 (resulting from moving a spike at time t = 1 s by 0.5, 1,
2 ms) one gets the dependence of this Lyapunov exponent on
the circuit parameter λ shown in Fig. 3(b) (for values of λ and
Wscale on a straight line between the points marked in the map
of Fig. 3(c)). The middle curve in Fig. 3(c) shows for which
values of λ and Wscale the Lyapunov exponent is estimated to
have the value 0. This estimate is quite robust with respect to



R. Legenstein, W. Maass / Neural Networks 20 (2007) 323–334 327
Fig. 3. Analysis of changes in the dynamics resulting from small input differences for different types of neural microcircuit models as specified in Section 2. Each
circuit C was tested for two arrays u and v of 4 input spike trains at 20 Hz over 10 s that differed only in the timing of a single spike at time t = 1 s. (a) A spike at
time t = 1 s was delayed by 0.5 ms. Temporal evolution of Euclidean differences between resulting circuit states xu(t) and xv(t) with 3 different values of λ, Wscale
according to the 3 points marked in panel (c). For each parameter pair, the average state difference (thick line) and standard deviation (thin line) of 40 randomly
drawn circuits is plotted. (b) Lyapunov exponents µ along a straight line between the points marked in panel (c) with different delays of the delayed spike. The delay
is denoted on the right of each line. The exponents were determined for the average state difference of 40 randomly drawn circuits. (c) Lyapunov exponents µ for
90 different types of neural microcircuits C with λ varying on the x-axis and Wscale on the y-axis (the exponents were determined for the average state difference
of 20 randomly drawn circuits for each parameter pair). A spike in u at time t = 1 s was delayed by 0.5 ms. The contour lines indicate where µ crosses the values
−1, 0, and 1. (d) Computational performance of a linear readout with these circuits (same as Fig. 1(b)), shown for comparison with panel (c).
the choice of δ0 and 1T .5 By comparing the middle curve in
Fig. 3(c) with those regions on this parameter map where the
circuits have the largest computational performance (for the
classification of noisy spike patterns, see Fig. 3(d)), one sees
that this line runs through those regions which yield the largest
computational performance for these computations. We refer
to Mayor and Gerstner (2005) for other recent work on the
relationship between the edge of chaos and the computational
performance of spiking neural circuit models.

Although this estimated edge of chaos coincides quite well
with points of best computational performance, it remains an
unsatisfactory tool for predicting parameter regions with large
computational performance for three reasons:

(i) Since the edge of chaos is a lower-dimensional manifold
in a parameter map (in this case a curve in a 2D map),
it cannot predict the (full-dimensional) extent of regions
within a parameter map that yield high computational
performance (e.g. the regions with light shading in
Fig. 1(b)).

(ii) The edge of chaos does not provide intrinsic reasons
why points of the parameter map yield small or large
computational performance.
5 The zero crossing of the Lyapunov exponent is at λ = 1.94, 1.93, and 1.91
for 1T = 1, 1.5, and 2 s respectively (δ0 = 0.5 ms). We used relatively large
1T well-suited for circuits at the edge of chaos in our setup. For the chaotic
circuit “circuit 3” in Fig. 3(a), a smaller 1T would be more appropriate in order
to avoid saturation of the state separation. But since we are mainly interested in
the edge of chaos, we opted for 1T = 1.5 s.
(iii) It turns out that in some parameter maps different regions
provide circuits with large computational performance for
linear readouts for different classes of computational tasks
(as shown in Section 8 for computations on spike patterns
and for computations with firing rates). But the edge of
chaos can at best single out peaks for one of these regions.
Hence it cannot possibly be used as a universal predictor
of maximal computational performance for different types
of computational tasks.

These three deficiencies suggest that more sophisticated
tools are needed in order to solve the question of what makes a
neural microcircuit model computationally superior.

4. A measure for the kernel-quality

One expects from a powerful computational system that
significantly different input streams cause significantly different
internal states, and hence may lead to different outputs. Most
real-world computational tasks require that a readout gives a
desired output not just for 2, but for a fairly large number m of
significantly different inputs. One could of course test whether
a readout on a circuit C can separate each of the

(m
2

)
pairs of

such inputs. But even if the readout can do this, we do not know
whether a neural readout from such circuit would be able to
produce given target outputs for these m inputs.

Therefore we propose here the linear separation property
as a more suitable quantitative measure for evaluating the
computational performance of a neural microcircuit (or more
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precisely: the kernel-quality of a circuit; see below). To evaluate
the linear separation property of a circuit C for m different
inputs u1, . . . , um (which are in this article always functions
of time, i.e. input streams such as for example multiple spike
trains) we compute the rank of the n × m matrix M whose
columns are the circuit states xui (t0) resulting at some fixed
time t0 for the preceding input stream ui . If this matrix has rank
m, then it is guaranteed that any given assignment of target
outputs yi ∈ R at time t0 for the inputs ui can be implemented
by this circuit C (in combination with a linear readout). In
particular, each of the 2m possible binary classifications of
these m inputs can then be carried out by a linear readout
from this fixed circuit C . Obviously such insight is much
more informative than a demonstration that some particular
classification task can be carried out by a readout neuron on
such circuit C . If the rank of this matrix M has a value r < m,
then this value r can still be viewed as a measure for the
computational performance of this circuit C , since r is the
number of “degrees of freedom” that a linear readout has in
assigning target outputs yi to these inputs ui (in a way which
can be made mathematically precise with concepts of linear
algebra). Note that this rank-measure for the linear separation
property of a circuit C may be viewed as an empirical measure
for its kernel-quality, i.e. for the complexity and diversity of
nonlinear operations carried out by C on its input stream in
order to boost the classification performance of a subsequent
linear decision-hyperplane (see Vapnik (1998)).

5. A measure for the generalization capability

Obviously the preceding measure addresses only one
component of the computational performance of a neural circuit
C with linear readout. Another component is its capability
to generalize a learned computational function to new inputs.
Mathematical criteria for generalization capability are derived
in Vapnik (1998) (see Ch. 4 of Cherkassky and Mulier (1998)
for a compact account of results relevant for our arguments).
According to this mathematical theory one can quantify the
generalization capability of any learning device in terms of
the VC-dimension of the class H of hypotheses that are
potentially used by that learning device.6 More precisely:
if VC-dimension (H) is substantially smaller than the size
of the training set Strain, one can prove that this learning
device generalizes well, in the sense that the hypothesis (or
input–output map) produced by this learning device is likely to
have for new examples an error rate which is not much higher
than its error rate on Strain, provided that the new examples are
drawn from the same distribution as the training examples (see
Eq. (4.22) in Cherkassky and Mulier (1998)).

We apply this mathematical framework to the class HC of
all maps from a set Suniv of inputs u into {0, 1} which can be
6 The VC-dimension (of a class H of maps H from some universe Suniv of
inputs into {0, 1}) is defined as the size of the largest subset S ⊆ Suniv which
can be shattered by H. One says that S ⊆ Suniv is shattered by H if for every
map f : S → {0, 1} there exists a map H inH such that H(u) = f (u) for all
u ∈ S (this means that every possible binary classification of the inputs u ∈ S
can be carried out by some hypothesis H inH).
implemented by a circuit C with linear readout. More precisely:
HC consists of all maps from Suniv into {0, 1} that a linear
readout from circuit C with fixed internal parameters (weights
etc.) but arbitrary weights w ∈ Rn of the readout (that classifies
the circuit input u as belonging to class 1 if w · xu(t0) ≥ 0, and
to class 0 if w · xu(t0) < 0) could possibly implement.

Whereas it is very difficult to achieve tight theoretical
bounds for the VC-dimension of even much simpler neural
circuits, see Bartlett and Maass (2003), one can efficiently
estimate the VC-dimension of the class HC that arises in our
context for some finite ensemble Suniv of inputs (that contains
all examples used for training or testing) by using the following
mathematical result (which can be proved with the help of
Radon’s Theorem).

Theorem 5.1. Let r be the rank of the n × s matrix consisting
of the s vectors xu(t0) for all inputs u in Suniv (we assume that
Suniv is finite and contains s inputs). Then r ≤ VC-dimension
(HC ) ≤ r + 1.

Proof. Fix some inputs u1, . . . , ur in Suniv so that the resulting
r circuit states xui (t0) are linearly independent. The first
inequality is obvious since this set of r linearly independent
vectors can be shattered by linear readouts from the circuit C .
To prove the second inequality assume the contradiction that
there exists a set v1, . . . , vr+2 of r +2 inputs in Suniv so that the
corresponding set of r + 2 circuit states xvi (t0) can be shattered
by linear readouts. This set M of r + 2 vectors is contained in
the r -dimensional space spanned by the linearly independent
vectors xu1(t0), . . . , xur (t0). Radon’s Theorem implies that M
can be partitioned into disjoint subsets M1, M2 whose convex
hulls intersect. Since these sets M1, M2 cannot be separated by
a hyperplane, it is clear that no linear readout exists that assigns
value 1 to points in M1 and value 0 to points in M2. Hence
M = M1 ∪ M2 is not shattered by linear readouts, which is a
contradiction to our assumption. �

We propose to use the rank r defined in Theorem 5.1 as
an estimate of VC-dimension (HC ), and hence as a measure
that informs us about the generalization capability of a neural
microcircuit C (for arbitrary probability distributions over the
set Suniv). It is assumed here that the set Suniv contains many
noisy variations of the same input signal, since otherwise
learning with a randomly drawn training set Strain ⊆ Suniv has
no chance to generalize to new noisy variations. This use of
noisy variations stands in contrast to the estimate of the kernel-
quality where we tested how well the circuit can distinguish
different input streams. Hence, the rank r in Theorem 5.1 is in
general different from the rank which we used to estimate the
kernel-quality because of the different input distributions. Note
that each family of computational tasks induces a particular
notion of what aspects of the input are viewed as noise, and
what input features are viewed as signals that carry information
which is relevant for the target output for at least one of these
computational tasks. For example for computations on spike
patterns some small jitter in the spike timing is viewed as
noise. For computations on firing rates even the sequence of
interspike intervals and temporal relations between spikes that
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Fig. 4. VC-dimension as predictor for the generalization capability of neural microcircuit models. (a) Prediction of the generalization capability for 90 different
types of neural microcircuits (as in Fig. 1(b)): estimated VC-dimension (of the hypothesis classHc for a set Suniv of inputs consisting of 500 jittered versions of 4
spike patterns), each of the 90 data points for 90 different circuit types was computed as the average over 20 circuits; for each circuit, the average over 5 different
sets of spike patterns was used. The standard deviation is shown in the inset on the upper right. See Section 6 for details. (b) Actual generalization capability ((error
on test set) − (error on training set)) of the same neural microcircuit models for a particular learning task, quantified by the difference of test error and training error
(error defined as the fraction of examples that are misclassified) in the spike pattern classification task discussed in Section 2. The standard deviation is shown in the
inset on the upper right.
arrive from different input sources are viewed as noise, as
long as these input spike trains represent the same firing rates.
Consequently different sets Suniv become relevant for estimates
of the generalization capability of circuits for these two types
of computational tasks. Hence, in contrast to the edge of chaos
analysis, the proposed measures are dependent on the actual
family of tasks considered.

An example for the former computational task was discussed
in Section 2. This task was to output at time t = 200 ms the
class (0 or 1) of the spike pattern from which the preceding
circuit input had been generated (for some arbitrary partition
of the 80 fixed spike patterns into two classes, see Section 2).
For a poorly generalizing network, the difference between train
and test error is large. One would suppose that this difference
becomes large as the network dynamics become more chaotic.
This is indeed the case, see Fig. 4(b). The transition is well-
predicted by the estimated VC-dimension ofHC , see Fig. 4(a).
An example for a computational task on firing rates is given in
Section 8.

On first sight it seems difficult to estimate the kernel-quality
and the generalization capability with the rank of state matrices
in practice if there is noise in the circuit. One particular concern
is that with noisy neurons, the state matrix will almost always
have full rank because of noisy state vectors. It turns out that at
least in our models (where a noise current is injected into the
neurons), this concern is not justified. Our simulations show
that the state matrix does not have high rank in the ordered
dynamical regime, even in the case of strong noise currents, see
Section 8. The reason is that for a given input, a relatively large
percentage of neurons is not activated at all. The noise has only
an influence on the state value of activated neurons, the state
value of neurons which are not activated remains zero as long
as the noise is not strong enough to activate them (an advantage
of spiking neurons over analog neurons). For a more detailed
analysis of this issue, see Section 6.

6. Evaluating the influence of synaptic connectivity on
computational performance

We now test the predictive quality of the two proposed
measures for the computational performance of a microcircuit
with linear readout on spike patterns. One should keep in
mind that the proposed measures do not attempt to test the
computational capability of a circuit with linear readout for
one particular computational task, but for any distribution on
Suniv and for a very large (in general infinitely large) family
of computational tasks that only have in common a particular
bias regarding which aspects of the incoming spike trains
may carry information that is relevant for the target output of
computations, and which aspects should be viewed as noise.
The details on how we evaluated the measures are given in
Appendix A.2. Fig. 5(a) explains why the lower left part of
the parameter map in Fig. 1(b) is less suitable for any such
computation, since there the kernel-quality of the circuits is too
low. Fig. 5(b) explains why the upper right part of the parameter
map in Fig. 1(b) is less suitable, since a higher VC-dimension
(for a training set of fixed size) entails poorer generalization
capability. We are not aware of a theoretically founded way
of combining both measures into a single value that predicts
overall computational performance. But if one just takes the
difference of both measures then the resulting number (see
Fig. 5(c)) predicts quite well which types of neural microcircuit
models together with a linear readout perform well for the
particular computational tasks considered in Fig. 1(b). Note that
the difference of these two measures does not just reconfirm
the well-known fact from statistical learning theory that neither
a too small nor a too large hypothesis class is adequate. It
also produces quite good predictions concerning the question
where exactly in the fairly large range in between the best
computational performance of neural microcircuit models can
be expected.

The rather small rank of the state matrix, especially in
the ordered regime, can be explained in part by the small
number of neurons which get activated (i.e., emit at least one
spike) for a given input pattern. For some input pattern u,
let the activation vector xact

u ∈ {0, 1}
n be the vector with

the i th entry being 1 if neuron i was activated during the
presentation of this pattern (i.e., up to t0) and 0 otherwise
(where n is the total number of neurons in the circuit). The
number of neurons activated for a given input u is then the
number of ones in xact

u . Fig. 6(a) shows that in the ordered
regime, approximately 100 of the 540 neurons get activated
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Fig. 5. Values of the proposed measures for computations on spike patterns. (a) Kernel-quality for spike patterns of 90 different circuit types (average over 20
circuits, mean SD = 13). 7 (b) Generalization capability for spike patterns: estimated VC-dimension of HC (for a set Suniv of inputs u consisting of 500 jittered
versions of 4 spike patterns), for 90 different circuit types (same as Fig. 4(a)). (c) Difference of both measures (the standard deviation is shown in the inset on the
upper right). This should be compared with actual computational performance plotted in Fig. 1(b).

Fig. 6. Analysis of the sets of neurons which get activated. (a) For a given input pattern, only a small fraction of the 540 circuit neurons are activated (i.e., emit
at least one spike). Shown is the mean number of neurons which are activated by an input pattern. For each parameter setting, the mean over 20 circuits and 125
patterns per circuit is shown. The input patterns were drawn from the same distribution as the templates for the task in Fig. 1. (b) For different input patterns, sets of
activated neurons are diverse. Shown is the mean Hamming distance between two of the 125 activation vectors arising from a set of circuit inputs consisting of 125
jittered versions of a spike template. For each parameter setting, the mean over 20 circuits is shown. (c) Difference between the mean Hamming distance for an input
set consisting of 125 randomly drawn spike templates and the mean Hamming distance for an input set consisting of 125 jittered versions of a spike template. This
difference predicts computational performance (see Fig. 1(b)) quite well. For each parameter setting, the mean over 20 circuits is shown. The standard deviation is
shown in the inset on the upper right.
7 The rank of the matrix consisting of 500 circuit states xu(t) for t = 200 ms
was computed for 500 spike patterns over 200 ms as described in Section 4,
see Fig. 1(a). For each circuit, the average over 5 different sets of spike patterns
was used.
for a typical spike template. Note that different subsets of
circuit neurons get activated for different input templates, since
the rank of the state matrix in this regime is approximately
200, see Fig. 5(a). We tested to what extend the diversity
of activation vectors determines our proposed measures. To
measure the diversity of activation vectors over a set of m
inputs u1, . . . , um , we calculated the mean Hamming distance
between two of the activation vectors xact

u1
, . . . , xact

um
(i.e., we

calculated the mean of |xact
ui

−xact
u j

|L1 for i, j = 1, . . . , m, i < j ,
where |·|L1 denotes the L1 norm). Fig. 6(b) shows that the mean
Hamming distance between activation vectors for a set of input
patterns consisting of m = 125 jittered versions of a single
randomly drawn spike template only partially predicts the
generalization capability of the circuit shown in Fig. 4(a) and
the corresponding prediction by the estimated VC-dimension
shown in Fig. 4(b). The same is true if one compares the kernel-
quality of the circuit models with the mean Hamming distance
of activation vectors for 125 randomly drawn spike templates
(data not shown). The difference of the Hamming distances for
these two input sets heuristically informs us about how strongly
the signal (i.e., different spike templates) is represented in the
spatial circuit code (i.e., which neurons are activated) compared
to how strongly the noise (i.e., different jittered versions of
a single template) is represented in the spatial circuit code.
It turns out that this difference fits quite well to the outcome
of our theoretically derived measures, compare Fig. 6(c) with
Fig. 5(c).

Since noise in the circuit (e.g., a noise current injected
into the circuit neurons) has only a minor effect on the set of
activated neurons, this explains why the rank measures are not
strongly influenced by noise.

7. Predicting computational performance on the basis of
circuit states with limited precision

In the earlier simulations, the readout unit was assumed to
have access to the actual analog circuit states (which are given
by the low-pass filtered output spikes of the circuit neurons). In
a biological neural system however, readout elements may have
access only to circuit states of limited precision since signals
are corrupted by noise. Therefore, we repeated our analysis for
the case where each circuit state is only given with some fixed
finite precision. More precisely, the range of values of the state
vector components for each circuit was first normalized to the
range [0, 1]. Then, each circuit state xi (t) at time t was mapped
onto the closest value in {0, 0.1, 0.2, . . . , 1}.



R. Legenstein, W. Maass / Neural Networks 20 (2007) 323–334 331
Fig. 7. Performance and values of the proposed measures for different types of neural microcircuit models with linear readouts for classification of spike patterns on
the basis of circuit states with limited precision. In each case the actual analog value of each component of the circuit state was rounded to one of 11 possible values
(see text). (a) Fraction of examples (for 500 test examples) for which the output of the readout agreed with the target classification (the readout was trained by linear
regression with 2000 training examples; see Fig. 1(b) for more details). Note the similarity to Fig. 1(b). The standard deviation of the result is shown in the inset
on the upper right. (b) Generalization capability of the same neural microcircuit models for a particular learning task, quantified by the difference of test error and
training error (error defined as the fraction of examples that are misclassified). Compare with Fig. 4(b). (c) Kernel-quality for spike patterns of 90 different circuit
types. (d) Generalization capability for spike patterns. (e) Difference of both measures (the standard deviation is shown in the inset on the upper right). Compare
with Fig. 5(c).
8 In Shu et al. (2003), the input resistance of cortical pyramidal neurons in
vitro was 33 M� in the mean. In the UP-state, the membrane conductance
increased by 12.8 nS in mean, leading to a membrane resistance of roughly
23 M�.
The performance of such readouts on the spike pattern
classification task described in Section 2 is shown in Fig. 7(a).
As compared to Fig. 1(b), there is a slight increase in
performance in the upper right corner of the performance
landscape which corresponds to circuits of high activity. This
increase is mostly caused by an increase in the generalization
capability of circuits in this regime as shown in Fig. 7(b)
(compare to Fig. 5(b)).

The proposed measures indeed predict an increase of
the generalization capabilities of highly active circuits (see
Fig. 7(d)) which is only partly compensated by a decrease
in the kernel-quality of these circuits (see Fig. 7(c)).
The difference of both measures emphasizes this, however
it overestimates the influence of increased generalization
capability on computational performance for such circuits with
linear readouts (see Fig. 7(e)).

Altogether we conclude that both the actual computational
performance of circuits with linear readouts and the proposed
predictors are slightly changed when one moves from infinite to
finite precision of circuit states, but that the proposed predictors
of computational performance do quite well in either case.

8. Evaluating the computational performance of neural
microcircuit models in UP- and DOWN-states

Data from numerous intracellular recordings suggest that
neural circuits in vivo switch between two different dynamic
regimes that are commonly referred to as UP- and DOWN-
states. UP-states are characterized by a bombardment with
synaptic inputs from recurrent activity in the circuit, resulting
in a membrane potential whose average value is significantly
closer to the firing threshold, but also has larger variance.
Furthermore, synaptic bombardment in UP-states leads to an
increase in membrane conductance. We have simulated these
different dynamic regimes in circuits of size 3 × 3 × 15
by varying the membrane resistance Rm , the background
current Ibackground, and the noise current Inoise in parallel (see
Section 2).

We have tested the computational performance of circuits
in 13 different dynamic regimes. The membrane resistance Rm
was varied between 3.3 and 2.2 M� (note that the DOWN-
state is characterized by a larger membrane resistance). The
ratio of these resistances is in accordance with empirical data,
see Shu et al. (2003).8 For each value of Rm , a corresponding
background and noise current was set. The background current
was set such that Ibackground · Rm (the steady state membrane
voltage produced by this current) varied between 11.5 (for
Rm = 3.3 M�) and 14.5 mV (for Rm = 2.2 M�). The noise
current was set such that Inoise · Rm varied between 0.6 (for
Rm = 3.3 M�) and 6.6 mV (for Rm = 2.2 M�).

Two conceptually different computational tasks were
performed on these parameter sets and performance was
predicted by the rank measure. For the first task, inputs
consisted of 200 ms low frequency (5 Hz) spike trains in 30
input channels. The kernel-quality of a circuit was estimated
by measuring the rank of the state matrix at t = 200 ms for
135 independently drawn spike patterns. The VC-dimension
was estimated for a set Suniv of inputs consisting of 135
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Fig. 8. Analysis of the computational performance of simulated neural microcircuits (together with linear readouts) in different dynamic regimes. (a) Estimates
of the kernel-quality for 135 spike patterns (solid line; average over 20 circuits). Estimate of the VC-dimension for a set Suniv of inputs consisting of 135 jittered
versions of one spike pattern (dotted line; average over 20 circuits). (b) Difference of measures from panel (a) (as in Fig. 5(c); mean ± SD). (c) Evaluation
of computational performance (correlation coefficient; for 500 test examples) of a linear readout (trained by linear regression with 1000 training examples). 20
randomly drawn circuits and 20 target classification functions randomly drawn from the set of 230 possible classification functions were tested for each of the 13
different circuit types, and resulting correlation coefficients were averaged. (d) Estimates of the kernel-quality for input streams u with 132 different combinations
of 13 firing rates (solid line; average over 20 circuits). Estimate of the VC-dimension for a set Suniv of inputs consisting of 132 different spike trains u that represent
one combination of firing rates. (dotted line; average over 20 circuits). Also shown is the average number of neurons that get activated (i.e. fire at all) for a typical
input (dash-dotted line; scale on right hand side). (e) Difference of measures from panel (d) (solid line). Average firing rate in the same circuits for the same inputs
(dashed line). Note that the firing rates are poorly correlated both with the difference of the two measures, and with the computational performance shown in (f).
(f) Evaluation of computational performance (correlation coefficient; for 400 test examples) of a linear readout (trained by linear regression with 2000 training
examples). 20 randomly drawn circuits were tested for each of the 13 different circuit types, and resulting correlation coefficients were averaged. Results are shown
for classification at three different time points after stimulus onset: 100 ms (solid line), 150 ms (dashed line), and 200 ms (dash-dotted line).This shows that at least
for this task performances for these time points were comparable. Their performance peak (as a function of the amount of background noise) was also predicted
quite well by our two measures as shown in panel (e).
jittered versions of one spike pattern. In order to eliminate
effects of particular spike patterns, the average rank over 20
different spike patterns was evaluated for each circuit. Results
are shown in Fig. 8(a), (b). For each circuit, a linear readout was
trained to perform one (randomly chosen) out of 230 possible
classification tasks on noisy variations u of 30 fixed spike
patterns as circuit inputs u. The target performance was to
output at time t = 200 ms the class (0 or 1) of the spike pattern
from which the preceding circuit input had been generated (for
some arbitrary partition of the 30 fixed spike patterns into two
classes). Performance results are shown in Fig. 8(c). Details on
this task are given in Appendix A.3.

The second task was a classification task on firing rates.
Two rates r1 and r2 were drawn independently from the set
{20, 23, . . . , 56} Hz. Inputs u consisted of four Poisson spike
trains of length 100 ms, two with rate r1 and two with rate r2.
The kernel-quality of a circuit was estimated by measuring the
rank of the state matrix at t = 100 ms for the 132 different
combinations of firing rates. The VC-dimension was estimated
for a set Suniv of inputs consisting of 132 different spike trains
u that represent one combination of firing rates. In order to
eliminate effects of particular rate combinations, the average
rank over 20 different rate pairs was evaluated for each circuit.
Results are shown in Fig. 8(d), (e). The rather low number
of activated neurons (see Fig. 8(d), dash-dotted line) explains
why both the kernel-measure and the VC-dimension assume
values well below the total number of neurons in the circuit
(135) despite the presence of strong noise current. Note that
different sets of neurons get activated for different inputs, hence
the rank of the state matrix is larger than the average number
of activated neurons (see also the discussion on this issue in
Section 6). We then evaluated the computational performance
of neural microcircuit models on this rate task. Out of the 132

possible combinations of firing rates, 10 were chosen randomly.
These ten pairs of firing rates were randomly partitioned into
two classes. The task was to learn this arbitrary classification
of pairs of chosen firing rates (details on the task are given
in Appendix A.3). This task was nontrivial insofar as the
classification did not just rely on thresholds for firing rates.
Performance results are shown in Fig. 8(f).

The results suggest that linear readouts together with circuits
at the left end of this parameter map (corresponding to DOWN-
states) are predicted to have better computational performance
for computations on sparse input. This agrees quite well
with direct evaluations of computational performance. Hence
the proposed quantitative measures may provide a theoretical
foundation for understanding the computational function of
different states of neural activity.

An evaluation of the performance of the same predictors
for computational performance for a different two-dimensional
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parametrization of circuits between UP- and DOWN-states can
be found in Maass et al. (2005).

9. Discussion

We have proposed a new method for understanding why
one neural microcircuit C is performing better than another
neural microcircuit C ′ (for some large family of computational
tasks that only have to agree with regard to those features of
the circuit input, e.g. rates or spike patterns, on which the
target outputs may depend). More precisely, we have introduced
two measures (a kernel-measure for the nonlinear processing
capability, and a measure for the generalization capability)
whose sum predicts quite well those dynamical ranges where
cortical microcircuit models have the largest computational
capability. This method can also be used to understand the
computational function of further biological details that may
be added in future microcircuit models. But this method is
in principle applicable not just to circuit models, but also to
neural microcircuits in vivo and in vitro. Here it can be used
to analyze (for example by optical imaging) for which family
of computational tasks a particular microcircuit in a particular
dynamic regime is optimal, or at least well-suited.

The main assumption of the method is that (approximately)
linear readouts from neural microcircuits have the task to
produce the actual outputs of specific computations. Also
for the classification of spike patterns, a particular time was
assumed at which the readout was supposed to extract the result.
It is not clear how such timing problems are solved in the
brain. On the other hand, we have shown in Fig. 8(f) that the
performance of the readout does not depend very much on the
chosen time point.

We are not aware of specific theoretically founded rules
for choosing the sizes of the ensembles of inputs for which
the kernel-measure and the VC-dimension are to be estimated.
Obviously both have to be chosen sufficiently large so that they
produce a significant gradient over the parameter map under
consideration (taking into account that their maximal possible
value is bounded by the circuit size). To achieve theoretical
guarantees for the performance of the proposed predictor
of the generalization capability of a neural microcircuit one
should apply it to a relatively large ensemble Suniv of circuit
inputs (and the dimension n of circuit states should be even
larger). But the computer simulations of 102 types of neural
microcircuit models that were discussed in this article suggest
that practically quite good predictions can already be achieved
for a much smaller ensemble of circuit inputs.

The paradigms laid out in this article can potentially also
be used to design high performance neural microcircuits. One
can speculate that a design which is optimized for the trade off
between separation of inputs and generalization is implemented
for example in primary visual areas of many animals. In cat
area 17, complex cells are highly selective for features such
as orientation, but relatively unaffected by translation of the
stimulus in the receptive field of the cells. This behavior is well-
suited for tasks such as object recognition where orientation is
important, but translation of an object can be regarded as noise.
The analysis of how circuits should be designed in general to
achieve optimality with respect to the proposed measures is one
direction of future work. Another direction is the investigation
of learning rules which are based on the measures presented in
this article to self-organize a circuit for a given computational
task. Learning rules which bring the dynamics of circuits to
the edge of chaos have already been proposed for circuits
consisting of threshold gates, see Legenstein and Maass (2007)
for a short review.

Altogether we hope that this article provides a small step
towards the development of a computational theory that can not
only be applied to constructed or strongly simplified models of
neural circuits, but also to arbitrarily realistic computer models
and to actual data from neural tissue.
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Appendix. Simulation details

A.1. Spike template classification task

In this section, we describe the setup of the spike template
classification task in detail. The performance of neural
microcircuit models on this task is shown, e.g., in Fig. 1(b).
The data for this plot was produced by the following steps:

1. We drew 80 spike templates. Each template consisted of four
Poisson spike trains with a rate of 20 Hz and a duration of
200 ms. For training and testing later on, we did not use
exactly these spike trains but took jittered versions of the
templates. A jittered version of a template was produced
by jittering each spike in each spike train by an amount
drawn from a Gaussian distribution with zero mean and an
SD of 10 ms. Spikes which were outside the time interval
of zero and 200 ms after jittering were rejected. Two such
spike templates and jittered versions of them are shown in
Fig. 1(a).

2. We randomly drew 10 dichotomies on these spike templates.
Each dichotomy classified 40 of the 80 spike templates as
positive.

3. A neural microcircuit was drawn according to the λ and
Wscale value in question. For each dichotomy, a neural
readout was trained on the state vector of the microcircuit at
time t = 200 ms with a jittered version of one spike template
as input. 2000 training examples were used for training.

4. The performance of one trial was hence determined as the
mean over the performances of the 10 readout units on 500
test examples.

5. The result for one Wscale and λ pair shown in Fig. 1(b) is the
mean over 20 such runs (the SD of these 20 runs is shown in
the inset).
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A.2. Prediction of computational performance

We describe in detail how we estimated the kernel-quality
and generalization capability of microcircuits for the task
described above. These estimates are shown in Fig. 5. The
following steps show how we estimated the kernel-quality,
i.e., the ability of the circuit to discriminate different inputs:

1. We drew 500 spike templates of the same type as in the
classification task (four 20 Hz Poisson spike trains over 200
ms). We used the same templates for all Wscale–λ pairs of
one trial to reduce the variance of the results.

2. A neural microcircuit was drawn according to the λ and
Wscale value in question. The state vectors of the microcircuit
at time t = 200 ms with one of the 500 spike templates as
input were stored in the matrix M . The rank of the matrix
M was estimated by singular value decomposition (Matlab
function rank).

3. The result for one Wscale–λ pair shown in Fig. 1(b) is the
mean over 20 such runs (the SD of these 20 runs is shown in
the inset).

The estimation of the generalization capability was done
similarly. However, instead of using 500 different templates as
inputs to the microcircuit, we drew only four different templates
and used 500 jittered versions of these four templates (i.e., 125
jittered versions of each template) as inputs. This allowed us to
test the response of the circuit on spike jitter.

A.3. Computations in UP- and DOWN-states

The evaluation of computational performance of neural
microcircuits for the spike template classification task was done
as described in Appendix A.1, with the following differences:
Spike templates consisted of 30 spike trains. We considered 30
different spike templates. Jittered versions of spike templates
were produced by Gaussian jitter with a SD of 4 ms. Neural
readouts were trained on 1000 training examples and tested on
20 test examples.

The input to the microcircuit model for the classification task
on firing rates consisted of four Poisson spike trains over 100
ms. Two of them had a rate r1, and two had a rate r2. Possible
rates for r1 and r2 were {20, 23, . . . , 56} Hz. From these 132

possible pairs of rates, 10 were chosen randomly. Furthermore,
30 dichotomies (each classifying 5 rate pairs as positive) on
these 10 rate pairs were chosen randomly and kept fixed.
A neural microcircuit was drawn according to the parameter
values in question. For each dichotomy, a neural readout was
trained with linear regression on 2000 training examples. The
performance of one trial was determined as the mean over the
performances of the 30 readout units on 500 test examples. The
result for one parameter value shown in Fig. 8(f) is the mean
over 20 such runs. The same simulations were performed for
spike trains over 150 and 200 ms and classifications at time
points 150 and 200 ms. This was done in order to compare the
prediction with classifications at different time points (dashed
and dash-dotted lines in Fig. 8(f)).
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