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Abstract

The control of neuroprosthetic devices from the activity ofmotor cortex neurons
benefits from learning effects where the function of these neurons is adapted to
the control task. It was recently shown that tuning properties of neurons in mon-
key motor cortex are adapted selectively in order to compensate for an erroneous
interpretation of their activity. In particular, it was shown that the tuning curves of
those neurons whose preferred directions had been misinterpreted changed more
than those of other neurons. In this article, we show that theexperimentally ob-
served self-tuning properties of the system can be explained on the basis of a
simple learning rule. This learning rule utilizes neuronalnoise for exploration and
performs Hebbian weight updates that are modulated by a global reward signal.
In contrast to most previously proposed reward-modulated Hebbian learning rules,
this rule does not require extraneous knowledge about what is noise and what is
signal. The learning rule is able to optimize the performance of the model system
within biologically realistic periods of time and under high noise levels. When the
neuronal noise is fitted to experimental data, the model produces learning effects
similar to those found in monkey experiments.

1 Introduction

It is a commonly accepted hypothesis that adaptation of behavior results from changes in synap-
tic efficacies in the nervous system. However, there exists little knowledge about how changes in
synaptic efficacies change behavior and about the learning principles that underlie such changes. Re-
cently, one important hint has been provided in the experimental study [1] of a monkey controlling
a neuroprostethic device. The monkey’s intended movement velocity vector can be extracted from
the firing rates of a group of recorded units by the populationvector algorithm, i.e., by computing
the weighted sum of their PDs, where each weight is the unit’snormalized firing rate [2].1 In [1],
this velocity vector was used to control a cursor in a 3D virtual reality environment. The task for the
monkey was to move the cursor from the center of an imaginary cube to a target appearing at one of
its corners. It is well known that performance increases with practice when monkeys are trained to
move to targets in similar experimental setups, i.e., the function of recorded neurons is adapted such
that control over the new artificial “limb” is improved [3]. In [1], it was systematically studied how
such reorganization changes the tuning properties of recorded neurons. The authors manipulated
the interpretation of recorded firing rates by the readout system (i.e., the system that converts firing

∗To whom correspondence should be addressed:robert.legenstein@igi.tugraz.at
1In general, a unit is not necessarily equal to a neuron in the experiments. Since the spikes of a unit are

determined by a spike sorting algorithm, a unit may represent the mixed activity of several neurons.
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rates of recorded neurons into cursor movements). When the interpretation was altered for a subset
of neurons, the tuning properties of the neurons in this subset changed significantly stronger than
those of neurons for which the interpretation of the readoutsystem was not changed. Hence, the ex-
periment showed that motor cortical neurons can change their activity specifically and selectively to
compensate for an altered interpretation of their activitywithin some task. Such adjustment strategy
is quite surprising, since it is not clear how the cortical adaption mechanism is able to determine for
which subset of neurons the interpretation was altered. We refer to this learning effect as the “credit
assignment” effect.

In this article, we propose a simple synaptic learning rule and apply it to a model neural network.
This learning rule is capable of optimizing performance in a3D reaching task and it can explain
the learning effects described in [1]. It is biologically realistic since weight changes are based
exclusively on local variables and a global scalar reward signalR(t). The learning rule is reward-
modulated Hebbian in the following sense: Weight changes atsynapses are driven by the correlation
between a global reward signal, the presynaptic activity, and the difference of the postsynaptic po-
tential from its recent mean (see [4] for a similar approach). Several reward-modulated Hebbian
learning rules have been studied for quite some time both in the context of rate-based [5, 6, 7, 8, 4]
and spiking models [9, 10, 11, 12, 13, 14, 15, 16]. They turn out to be viable learning mechanisms in
many contexts and constitute a biologically plausible alternative [17, 18] to backpropagation based
mechanisms preferentially used in artificial neural networks. One important feature of the learning
rule proposed in this article is that noisy neuronal output is used for exploration to improve perfor-
mance. It was often hypothesized that neuronal variabilitycan optimize motor performance. For
example in songbirds, syllable variability results in partfrom variations in the motor command, i. e.
the variability of neuronal activity [19]. Furthermore, there exists evidence for the songbird system
that motor variability reflects meaningful motor exploration that can support continuous learning
[20]. We show that relatively high amounts of noise are beneficial for the adaptation process but
not problematic for the readout system. We find that under realistic noise conditions, the learning
rule produces effects surprisingly similar to those found in the experiments of [1]. Furthermore,
the version of the reward-modulated Hebbian learning rule that we propose does not require ex-
traneous information about what is noise and what is signal.Thus, we show in this study that
reward-modulated learning is a possible explaination for experimental results about neuronal tuning
changes in monkey pre-motor cortex. This suggests that reward-modulated learning is an important
plasticity mechanism for the acquisition of goal-directedbehavior.

2 Learning effects in monkey motor cortex

In this section, we briefly describe the experimental results of [1] as well as the network that we used
to model learning in motor cortex. Neurons in motor and premotor cortex of primates are broadly
tuned to intended arm movement direction [21, 3].2 This sets the basis for the ability to extract
intended arm movement from recorded neuronal activity in inthese areas. The tuning curve of a
direction tuned neuron is given by its firing rate as a function of movement direction. This curve can
be fitted reasonably well by a cosine function. The preferreddirection (PD)pi ∈ R

3 of a neuroni is
defined as the direction in which the cosine fit to its firing rate is maximal, and the modulation depth
is defined as the difference in firing rate between the maximumof the cosine fit and the baseline
(mean). The experiments in [1] consisted of a sequence of four brain control sessions:Calibration,
Control, Perturbation, andWashout. The tuning functions of an average of 40 recorded neurons
were obtained in theCalibration session where the monkey moved its hand in a center out reaching
task. Those PDs (or manipulated versions of them) were laterused for decoding neural trajectories.
We refer to PDs used for decoding as “decoding PDs” (dPDs) in order to distinguish them from
measured PDs. InControl, Perturbation, andWashout sessions the monkey had to perform a cursor
control task in a 3D virtual reality environment (see Figure1B). The cursor was initially positioned
in the center of an imaginary cube, a target position on one ofthe corners of the cube was randomly
selected and made visible. When the monkey managed to hit thetarget position with the cursor
or a 3s time period expired, the cursor position was reset to the origin and a new target position
was randomly selected from the eight corners of the imaginary cube. In theControl session, the
measured PDs were used as dPDs for cursor control. In thePerturbation session, the dPDs of a
randomly selected subset of neurons (25% or 50% of the recorded neurons) were altered. This was

2Arm movement refers to movement of the endpoint of the arm.
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Figure 1: Description of the 3D cursor control task and network model for cursor control. A)
Schematic of the network model. A set ofm neurons project tontotal noisy neurons in motor
cortex. The monkey arm movement was modeled by a fixed linear mapping from the activities of
the modeled motor cortex neurons to the 3D velocity vector ofthe monkey arm. A subset ofn
neurons in the simulated motor cortex was recorded for cursor control. The cursor velocity was
given by the population vector. B) The task was to move the cursor from the center of an imaginary
cube to one of its eight corners.

achieved by rotating the measured PDs by 90 degrees around thex, y, orz axes (all PDs were rotated
around a single common axis in each experiment). We term these neuronsrotated neurons. Other
dPDs remained the same as in theControl session (non-rotated neurons). The measured PDs were
used for cursor control in the subsequentWashout session. In thePerturbation session, neurons
adapted their firing behavior to compensate for the altered dPDs. The authors observed differential
effects of learning for the two groups of non-rotated neurons and rotated neurons. Rotated neurons
tended to shift their PDs in the direction of dPD rotation, thus compensating for the perturbation.
For non-rotated neurons, the change of the preferred directions was weaker and significantly less
strongly biased towards the rotation direction. We refer tothis differential behavior of rotated and
non-rotated neurons as the “credit assignment effect”.

Network and neuron model: Our aim in this article is to explain the described effects inthe
simplest possible model. The model consisted of two populations of neurons, see Figure 1A. The
input population modeled those neurons which provide inputto the neurons in motor cortex. It
consisted ofm = 100 neurons with activitiesx1(t), . . . , xm(t) ∈ R. Another population modeled
neurons in motor cortex which receive inputs from the input population. It consisted ofntotal =
340 neurons with activitiess1(t), . . . , sntotal(t).3 All modeled motor cortex neurons were used to
determine the monkey arm movement in our model. A small number of them (n = 40) modeled
recorded neurons used for cursor control. We denote the activities of this subset ass1(t), . . . , sn(t).

The total synaptic inputai(t) for neuroni at timet was modeled as a noisy weighted sum of its
inputs:

ai(t) =

m
∑

j=1

wijxj(t) + ξi(t), ξi(t) drawn from distributionD(ν), (1)

wherewij is the synaptic efficacy from input neuronj to neuroni. These weights were set randomly
from a uniform distribution in the interval[−0.5, 0.5] at the beginning of each simulation.ξi(t)
models some exploratory signal needed to explore possibly better network behaviors. In cortical
neurons, this exploratory signal could for example result from neuronal or synpatic noise, or it could
be spontaneous activity of the neuron. An independent sample from the zero mean distributionD(ν)
was drawn as the exploratory signalξi(t) at each time step. The parameterν (exploration level)

3The distinction between these two layers is purely functional. Input neurons may be situated in extracortical
areas, in other cortical areas, or even in motor cortex itself. The functional feature of these two populations
in our model is that learning takes place solely in synapses of projections between these population since the
aim of this article is to explain the learning effects in the simplest model. But in principle the same learning is
applicable to multilayer networks.
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determines the variance of the distribution and hence the amount of noise in the neuron. A nonlinear
function was applied to the total synaptic input,si(t) = σ (ai(t)), to obtain the activitysi(t) of
neuroni at timet. We usedσ : R → R is the piecewise linear activation functionσ(x) = max{x, 0}
in order to guarantee non-negative firing rates.

Task model: We modeled the cursor control task as shown in Figure 1B. Eight possible cursor target
positions were located at the corners of a unit cube in 3D space which had its center at the origin
of the coordinate system. At each time stept the desired direction of cursor movementy

∗(t) was
computed from the current cursor and target position. By convention, the desired directiony∗(t) had
unit Euclidean norm. From the desired movement directiony

∗(t), the activitiesx1(t), . . . , xm(t)
of the neurons that provide input to the motor cortex neuronswere computed and the activities
s1(t), . . . , sn(t) of the recorded neurons were used to determine the cursor velocity via their popu-
lation activity vector (see below).

In order to model the cursor control experiment, we had to determine the PDs of recorded neurons.
Obviously, to determine PDs, one needs a model for monkey armmovement. In monkeys, the trans-
formation from motor cortical activity to arm movements involves a complicated system of several
synaptic stages. In our model, we treated this transformation as a black box. Experimental findings
suggest that monkey arm movements can be predicted quite well by a linear model based on the
activities of a small number of motor cortex neurons [3]. We therefore assumed that the direction
of the monkey arm movementyarm(t) at timet can be modeled in a linear way, using the activi-
ties of the total population of thentotal cortical neuronss1(t), . . . , sntotal(t) in our simple model
and a fixed randomly chosen3 × ntotal linear mappingQ (see [23]). With the transformation from
motor cortex neurons to monkey arm movements being defined, the input to the network for a given
desired directiony∗ should be chosen such that motor cortex neurons produce a monkey arm move-
ment close to the desired movement direction. We therefore calculated from the desired movement
direction input activitiesx(t) = crate(W

total)†Q†
y
∗(t), whereQ† denotes the pseudo-inverse of

Q, W total denotes the matrix of weightswij before learning, andcrate scales the input activity
such that the activities of the neurons in the simulated motor cortex could directly be interpreted as
rates in Hz [23]. This transformation from desired directions to input neuron activities was defined
initially and held fixed during each simulation because learning took place in our model in a single
synaptic stage from neurons of the input population to neurons in the motor cortex population in our
model and therefore the coding of desired directions did notchange in the input population.

As described above, a subset of the motor cortex population was chosen to model recorded neurons
that were used for cursor control. For each modeled recordedneuroni ∈ {1, . . . , n}, we determined
the preferred directionpi ∈ R

3 as well as the baseline activityβi and the modulation depthαi by
fitting a cosine tuning on the basis of simulated monkey arm movements [1, 23]. In the simulation
of aPerturbation session, dPDs̃pi of rotated neurons were rotated versions of the measured PDspi

(as in [1], one of thex, y, or z axis was chosen and the PDs were rotated by 90 degrees around this
axis), whereas the dPDs of non-rotated neurons were identical to their measured PDs. The dPDs
were then used to determine the movement velocityy(t) of the cursor by the population vector
algorithm [1, 2, 23]. This decoding strategy is consistent with an interpretation of the neural activity
which codes for the velocity of the movement.

3 Adaptation with an online learning rule

Adaptation of synaptic efficacieswij from input neurons to neurons in motor cortex is necessary
if the actual decoding PDs̃pi do not produce optimal cursor trajectories. Assume that suboptimal
dPDsp̃1, . . . , p̃n are used for decoding. Then for some inputx(t), the movement of the cursor is
not in the desired directiony∗(t). The weightswij should therefore be adapted such that at every
time stept the direction of movementy(t) is close to the desired directiony∗(t). We can quantify
the angular matchRang(t) at timet by the cosine of the angle between movement directiony(t) and

desired directiony∗(t): Rang(t) = y(t)T
y
∗(t)

||y(t)||·||y∗(t)|| . This measure has a value of 1 if the cursor moves
exactly in the desired direction, it is 0 if the cursor moves perpendicular to the desired direction, and
it is -1 if the cursor movement is in the opposite direction.

We assume in our model that all synapses receive informationabout a global rewardR(t). The
general idea that a neuromodulatory signal gates local synaptic plasticity was studied in [4]. In that
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study, the idea was implemented by learning rules where the weight changes are proportional to the
covariance between the reward signalR and some measure of neuronal activityN at the synapse.
Here,N could correspond to the presynaptic activity, the postsynaptic activity, or the product of
both. The authors showed that such learning rules can explain a phenomenon called Herrnstein’s
matching law. Interestingly, for the analysis in [4] the specific implementation of this correlation
based adaptation mechanism is not important. We investigate in this article a learning rule of this
type:

EH rule: ∆wij(t) = η xj(t) [ai(t) − āi(t)]
[

R(t) − R̄(t)
]

, (2)

whereāi(t) andR̄(t) denote the low-pass filtered version ofai(t) andR(t) with an exponential
kernel4. We refer to this rule as the exploratory Hebb rule (EH rule) in this article. The important
feature of this learning rule is that apart from variables which are locally available for each neuron
(xj(t), ai(t), āi(t)), only a single scalar signal,R(t), is needed to evaluate performance.5 The
reward signalR(t) is provided by some neural circuit which evaluates performance of the system.
In our simulations, we simply used the angular matchRang(t) as this reward signal. Weight updates
of the rule are based on correlations between deviations of the reward signalR(t) and the activation
ai(t) from their means. It adjusts weights such that rewards abovemean are reinforced. The EH
rule (2) approximates gradient ascent on the reward signal by exploring alternatives to the actual
behavior with the help of some exploratory signalξ(t). The deviation of the activation from the
recent meanai(t) − āi(t) is an estimate of the exploratory termξi(t) at timet if the mean̄ai(t) is
based on neuron activations

∑

j wijxj(t
′) which are similar to the activation

∑

j wijxj(t) at timet.
Here we make use of (1) the fact that weights are changing veryslowly and (2) the continuity of the
task (inputsx at successive time points are similar). Then, (2) can be seenas an approximation of

∆wij(t) = η xj(t)ξi(t)
[

R(t) − R̄(t)
]

. (3)

This rule is a typical node-perturbation learning rule [6, 7, 22, 10] which can be shown to approxi-
mate gradient ascent, see e.g. [10]. A simple derivation that shows the link between the EH rule (2)
and gradient ascent is given in [23].

The EH learning rule differs from other node-perturbation rules in an important aspect. In many
node-perturbation learning rules, the noise needs to be accessible to the learning mechanism sepa-
rately from the output signal. For example, in [6] and [7] binary neurons were used. The weight
updates there depend on the probability of the neuron to output 1. In [10] the noise term is directly
incorporated in the learning rule. The EH rule does not directly need the noise signal. Instead a
temporally filtered version of the neurons activation is used to estimate the noise signal. Obviously,
this estimate is only sufficiently accurate if the input to the neuron is temporally stable on small time
scales.

4 Comparison with experimentally observed learning effects

In this section, we explore the EH rule (2) in a cursor controltask that was modeled to closely match
the experimental setup in [1]. Each simulated session consisted of a sequence of movements from
the center to a target position at one of the corners of the imaginary cube, with online weight updates
during the movements. In monkey experiments, perturbationof decoding PDs lead to retuning of
PDs with the above described credit assignment effect [1]. In order to obtain biologically plausible
values for the noise distribution in our neuron model, the noise in our model was fitted to data
from experiments (see [23]). Analysis of the neuronal responses in the experiments showed that the
variance of the response for a given desired direction scaled roughly linearly with the mean firing
rate of that neuron for this direction. We obtained this behavior with our neuron model with noise
that is a mixture of an activation-independent noise sourceand a noise source where the variance
scales linearly with the activation of the neuron. In particular, the noise termξi(t) of neuroni was
drawn from the uniform distribution in[−νi(x(t)), νi(x(t))] with an exploration levelνi given by

νi(x(t)) = 10 + 2.8

√

σ
(

∑m

j=1 wijxj(t)
)

. The constants where chosen fit neuron behavior in the

data. We note that in all simulations with the EH rule, the input activitiesxj(t) were scaled in such a
way that the output of the neuron at timet could be interpreted directly as the firing rate of the neuron

4We used̄ai(t) = 0.8āi(t − 1) + 0.2ai(t) andR̄(t) = 0.8R̄(t − 1) + 0.2R(t)
5A rule where the activationai is replaced by the outputsi and obtained very similar results.
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Figure 2: One example simulation of the 50% perturbation experiment with the EH rule and data-
derived network parameters. A) Angular matchRang as a function of learning time. Every 100th
time point is plotted. B) PD shifts drawn on the unit sphere (arbitrary units) for non-rotated (black
traces) and rotated (light cyan traces) neurons from their initial values (light) to their values after
training (dark, these PDs are connected by the shortest pathon the unit sphere). The straight line in-
dicates the rotation axis. C) Same as B, but the view was altered such that the rotation axis is directed
towards the reader. The PDs of rotated neurons are consistently rotated in order to compensate for
the perturbation.
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Figure 3: PD shifts in simulatedPerturbation sessions are in good agreement with experimental
results (compare to Figure 3A,B in [1]). Shift in the PDs measured after simulated perturbation
sessions relative to initial PDs for all units in 20 simulated experiments where 25% (A) or 50% (B)
of the units were rotated. Dots represent individual data points and black circled dots represent the
means of rotated (light gray) and non-rotated (dark gray) units.

at timet. With such scaling, we obtained output values of the neuronswithout the exploratory signal
in the range of 0 to 120Hz with a roughly exponential distribution. Having estimated the variability
of neuronal response, the learning rateη remained the last free parameter of the model. To constrain
this parameter,η was chosen such that the performance in the 25% perturbationtask approximately
matched the monkey performance.

We simulated the two types of perturbation experiments reported in [1] in our model network with
40 recorded neurons. In the first set of simulations, a randomset of 25% of recorded neurons were
rotated neurons inPerturbation sessions. In the second set of simulations, we chose 50 % of the
recorded neurons to be rotated. In each simulation, 320 targets were presented to the model, which
is similar to the number of target presentations in [1]. Results for one example run are shown in
Figure 2. The shifts in PDs of recorded neurons induced by training in 20 independent trials were
compiled and analyzed separately for rotated neurons and non-rotated neurons. The results are
in good agreement with the experimental data, see Figure 3. In the simulated 25% perturbation
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experiment, the mean shift of the PD for rotated neurons was8.2 ± 4.8 degrees, whereas for non-
rotated neurons, it was5.5±1.6 degrees. This relatively small effect is similar to the effect observed
in [1] where the PD shift of rotated (non-rotated) units was9.9 (5.2) degrees. The effect is more
pronounced in the 50% perturbation experiment (see below).We also compared the deviation of the
movement trajectory from the ideal straight line in rotation direction half way to the target6 from
early trials to the deviation of late trials, where we scaledthe results to a cube of 11cm side length
in order to be able to compare the results directly to the results in [1]. In early trials, the trajectory
deviation was9.2 ± 8.8mm, which was reduced by learning to2.4 ± 4.9mm. In the simulated
50% perturbation experiment, the mean shift of the PD for rotated neurons was18.1 ± 4.2 degrees,
whereas for non-rotated neurons, it was12.1 ± 2.6 degrees (in monkey experiments [1] this was
21.7 and16.1 degrees respectively). The trajectory deviation was23.1 ± 7.5mm in early trials, and
4.8 ± 5.1mm in late trials. Here, the early deviation was stronger than in the monkey experiment,
while the late deviation was smaller.

The EH rule (2) falls into the general class of correlation-based learning rules described in [4].
In these rules the weight change is proportional to the covariance of the reward signal and some
measure of neuronal activity. We performed the same experiment with slightly different correlation-
based rules

∆wij(t) = η xj(t)ai(t)
[

R(t) − R̄(t)
]

, (4)

∆wij(t) = η xj(t) [ai(t) − āi(t)] R(t), (5)

(compare to (2)). The performance improvements were similar to those obtaint with the EH rule.
However, no credit assignment effect was observed with these rules. In the simulated 50% perturba-
tion experiment, the mean shift of the PD of rotated neurons (non-rotated neurons) was12.8 ± 3.6
(12.0 ± 2.4) degrees for rule (4) and25.5 ± 4 (26.8 ± 2.8) degrees for rule (5).

In the monkey experiment, training in thePerturbation session also induced in a decrease of the
modulation depth of rotated neurons. This resulted in a decreased contribution of these neurons
to the cursor movement. We observed a qualitatively similarresultin our simulations. In the 25%
perturbation simulation, modulation depths decreased on average by2.7±4.3Hz for rotated neurons.
Modulation depths for non-rotated neurons increased on average by2.2 ± 3.9Hz (average over 20
independent simulations). In the 50% perturbation simulation, the changes in modulation depths
were−3, 6 ± 5.5Hz for rotated neurons and5.4 ± 6Hz for non-rotated neurons.7 Thus, the relative
contribution of rotated neurons on cursor movement decreased.

Comparing the results obtained by our simulations to those of monkey experiments (compare Figure
3 to Figure 3 in [1]), it is interesting that quantitatively similar effects were obtained when noise
level and learning rate was constrained by the experimentaldata. One should note here that tuning
changes due to learning depend on the noise level. For small exploration levels, PDs changed only
slightly and the difference in PD change between rotated andnon-rotated neurons was small, while
for large noise levels, PD change differences can be quite drastic. Also the learning rateη influences
the amount of PD shift differences with higher learning rates leading to stronger credit assignment
effects, see [23] for details.

The performance of the system before and after learning is shown in Figure 4. The neurons in the
network after training are subject to the same amount of noise as the neurons in the network be-
fore training, but the angular match after training shows much less fluctuation than before training.
Hence, the network automatically suppresses jitter on the trajectory in the presence of high explo-
ration levelsν. We quantified this observation by computing the standard deviation of the angle
between the cursor velocity vector and the desired movementdirection for 100 randomly drawn
noise samples.8 The mean standard deviation for 50 randomly drawn target directions was always
decreased by learning. In the mean over the 20 simulations, the mean STD over 50 target directions
was 7.9 degrees before learning and 6.3 degrees after learning. Hence, the network not only adapted
its response to the input, it also found a way to optimize its sensitivity to the exploratory signal.

6These deviations were computed as described in [1]
7When comparing these results to experimental results, one has to take into account the modulation depths

in monkey experiments were around 10Hz whereas in the simulations, they were around 25Hz
8This effect is not caused by a larger norm of the weight vectors. The comparison was done with weight

vectors after training normalized to their L2 norm before training.
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Figure 4: Network performance before and after learning
for 50% perturbation. Angular matchRang(t) of the cur-
sor movements in one reaching trial before (gray) and after
(black) learning as a function of the time since the target
was first made visible. The black curve ends prematurely
because the target was reached faster. After learning tempo-
ral jitter of the performance was reduced, indicating reduced
sensitivity to noise.

5 Discussion

Jarosiewicz et al. [1] discussed three strategies that could potentially be used by the monkey to com-
pensate for the errors caused by perturbations: re-aiming,re-weighting, and re-mapping. Using the
re-aiming strategy, the monkey compensates for perturbations by aiming for a virtual target located
in the direction that offsets the visuomotor rotation. The authors identified a global change in the
activity level of all neurons. This indicates a re-aiming strategy of the monkey. Re-weighting would
suppress the use of rotated units, leading to a reduction of their modulation depths. A reduction of
modulation depths of rotated neurons was also identified in the experimentals. A re-mapping strat-
egy would selectively change the directional tunings of rotated units. Rotated neurons shifted their
PDs more than the non-rotated population in the experiments. Hence, the authors found elements of
all three strategies in their data. These three elements of neuronal adaptation were also identified in
our model: a global change in activity of neurons (all neurons changed their tuning properties; re-
aiming), a reduction of modulation depths for rotated neurons (re-weighting), and a selective change
of the directional tunings of rotated units (re-mapping). This modeling study therefore suggests that
all three elements can be explained by a single synaptic adaptation strategy that relies on noisy neu-
ronal activity and visual feedback that is made accessible to all synapses in the network by a global
reward signal. It is noteworthy that the credit assignment phenomenon is an emergent feature of the
learning rule rather than implemented in some direct way. Intuitively, this behavior can be explained
in the following way. The output of non-rotated neurons is consistent with the interpretation of the
readout system. So if this output is strongly altered, performance will likely drop. On the other hand,
if the output of a rotated neuron is radically different, this will often improve performance. Hence,
the relatively high noise levels measured in experiments are probably important for the credit assign-
ment phenomenon. Under such realistic noise conditions, our model produced effects surprisingly
similar to those found in the monkey experiments. Thus, thisstudy shows that reward-modulated
learning can explain detailed experimental results about neuronal adaptation in motor cortex and
therefore suggests that reward-modulated learning is an essential plasticity mechanism in cortex.

The results of this modeling paper also support the hypotheses introduced in [24]. The authors pre-
sented data which suggests that neural representations change randomly (background changes) even
without obvious learning, while systematic task-correlated representational changes occur within a
learning task.

Reward-modulated Hebbian learning rules are currently themost promising candidate for a learning
mechanism that can support goal-directed behavior by localsynaptic changes in combination with
a global performance signal. The EH rule (2) is one particularly simple instance of such rules that
exploits temporal continuity of inputs and an exploration signal - a signal which would show up as
“noise” in neuronal recordings. We showed that large exploration levels are beneficial for learning
while they do not interfere with the performance of the system because of pooling effects of readout
elements. This study therefore provides a hypothesis aboutthe role of “noise” or ongoing activity in
cortical circuits as a source for exploration utilized by local learning rules.
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