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Abstract: We introduce new techniques for
proving quadratic Tower bounds for deterministic
and nondeterministic 1-tape Turing machines (all
considered Turing machines have an additional one-
way input tape). In particular we produce quadra-
tic lower bounds for the simulation of 2-tape TM's
by 1-tape TM's and thus answer a rather old ques-
tion (problem No.l and No.7 in the 1ist of Duris,
Galil, Paul, Reischuk [3]). Further we demonstrate
a substantial superiority of nondeterminism over

determinism and of co-nondeterminism over nonde-

terminism for l-tape TM's.

Hartmanis and Stearns [5] have shown that
one can simulate a multi-tape TM (Turing machine)
that runs in time t(n) by a l-tape TM that runs

in time 0(t2(n)). This holds if both machines are
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deterministic and if both are nondeterministic.
However the question whether multi-tape TM's are
really substantially more powerful than l-tape

TM's has been left open (except for the case of
TM's without input tape; see below). In spite of
quite a bit of work only nearly linear lower bounds
have been ;chievedi Rabin [11] showed that there is
some difference: not every det. 2-tape TM that
runs in real time can be simulated by a det. 1-tape
TM that runs in real time (a TM M runs in real
time if there is a constant ¢, s.t. M spends at
most Cy steps before it reads the next input bit

resp. halts, thus real time implies linear time).
Wolfgang Paul introduced the notion of Kolmogorov
complexity into computational complexity theory and
used it to show that simulation of a real time det.
2-tape TM by an "on-line" det. l-tape TM requires
time IZ(n-]ogl/zn) [9]. His notion of "on-line"
machine helps to keep the simulator on a "shorter
leash". On the other hand it prevents the trans-
lation of the lower bound result into the familiar
terms of language acceptance (it is only signifi-

cant for machines with large output).

For nondeterministic TM's all questions about

the influence of the number of tapes on the compu-

ting power have been settled except for 2 tapes



versus 1 (according to Book, Greibach, Wegbreit [1]
one can simulate any nondet. TM without time Tloss
by a nondet. 2-tape TM). Concerning 2 tapes versus
1 Duris and Galil [2] proved that a real time det.
2-tape TM cannot be simulated by a nondet. 1-tape
TM in real time, In Duris, Galil, Paul, Reischuk
(3] the lower bound was improved to Q(n-log log n)
(apparently they have recently achieved £ (n.

log n) ).

' The main disadvantage of a l-tape TM is the
fact that it needs £ (s-d) steps to move a string
of s symbols on its work tape over d cells,
while a 2-tape TM can do this in time O(s+d}. This
observation allows to derive easily quadratic lower
bounds for a weak form of l-tape TM's that do not
have an additional input tape (they receive the in-
put on the work tape), see Hennie [6]. Such machine
requires quadratic time to check whether a string
is a palindrome. The l1-tape TM with an extra one-
way input tape --this is the model that is con-
sidered in the previously mentioned lower bound
literature and which we will consider in this pa-
per-- is quite a bit more powerful and can e.q.
recognize palindromes in linear time. In addition
such 1-tape TM has the option to choose a clever
data structure for the representation of the input
on its work tape (this may make it unnecessary to
perform during the computation many time consuming
copying operations). A c]éver data representation is
for example used to simulate a det. k-tape TM (for
any k > 2) with time bound t(n) by a det. 2-tape
TM without a severe time loss in time O0(t(n)-

Tog t(n)) (Hennie and Stearns [7]). In view of these

facts the correct value of the optimal lower bound

for two tapes versus one was somewhat dubious.
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In addition in the case of two tapes versus

one for nondeterministic TM's one has to be aware

that nondet. 1-tape TM's are already quite power-
ful. They accept already in linear time NP-complete
problems 1ike 3-COLORABILITY. From the technical
point of view such machines have the additional
option to use "individualized" data structures for
the representation of the input on their work tape
that are optimal for a particular computation on a
particular input. It turns out that nevertheless
the Hartmanis/Stearns simulation [5] 1is optimal in
the deterministic case and nearly optimal in the

nondeterministic case.

Theorem 1 There is a language that is accepted
by a deterministic 2-tape TM in linear (even real)
time but which requires time fl(nz) on any determi-

nistic 1-tape TM.

Theorem 2 There is a language that is accepted
by a deterministic 2-tape TM in linear (even real)
time but which is not accepted in time

O(nz/logsn) by any nondeterministic 1-tape TM.
Remark: In a preliminary version of this paper
we proved somewhat weaker Tower bounds (we showed
that a 1-tape TM cannot accept the considered
Tanguage in time O(nz's), for any 6> 0 ). We
are grateful to Zvi Galil and Joel Seiferas who
pointed out that with a more careful choice of
parameters our argument yields stronger lower
bounds. Further we use Galil's suggestion [4] to
save a log -factor by recording sequences of num-
bers less than n in a more concise way (by their

binary differences, one uses the convexity of the

log function for the estimate of the total length).



We now compare machines that have the same

storage facility (one work tape) but different con-

trol structures (det., nondet., co-nondet.). We
write DTIMEk(t(n)) and NTIMEk(t(n)) for the
classes of sets that are accepted in time 0(t(n))
by det. resp. nondet. k-tape TM's (always with an
additional one-way input tape). Known lower bound
results are NTIMEZ(n) & k\;JIDTIMEk((n-
1og*n)1/4) (Paul, Pippenger,‘Szemeredi, Trotter
[101), NTIMEy(n) ¢ OTIME,(n'*!) (Kannan [7]) and

NTIME,(n) ¢ OTIME,(n!:%2)

(Maass and Schorr
[8]; here the lower bound also holds for l-tape
TM's with a two-way input tape).

2) . Then

Theorem 3 Assume f(n) = o(n

NTIMEl(n) ¢ DTIMEl(f(n)).

Theorem 4 CO-NTIME,(n) & NTIME,(n%/log’n) .
To prove the preceding theorems we construct
a language LI for which the following three
lemmata hold. Theorem 2 and Theorem 4 follow
directly from these lemmata. The somewhat simpler
proofs of Theorem 1 and Theorem 3 are sketched

at the end of this paper.

Lemma 1 LI is accepted by a deterministic

2-tape TM in real time.

Lemma 2 The complement of LI is accepted by a

nondet. 1-tape TM in real time.

Lemma 3 (Main Lemma) Assume f(n) =

o(nz/]og4n - log log n) . Then L& NTIMEl(f(n)).

The language L; consists of finite sequen-

ces of symbols 0,1,2,3,4 and is defined as

follows:
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L

{xl...xnzl...zk | xl,..,xne{O,l} 2y =

=4,VaVb((lsa<bskAza=

1
Z, zy = 4 A
Vila<jcbaz;#4) = ({jlacich a
zj=2}l= |{j|a<j<bazj=3}| =n
Vi(la<jeba z;€ £0,13) = (zj_le{2,3} and

A

I{JI ‘a <j'$ j'll\zjl

if the number of 4's in 2y..2

for m := = zj_l}l one

has z

J " Xntl-m a

is odd and 25 = X otherwise)))}

In order to understand the structure of LI
1tAis helpful to go through the proof of Lemma 1 ,
i.e. to construct a det. 2-tape TM M' that reco-
gnizes words from LI in real time. M' interprets
each symbol 0,1,2,3,4 as a command. Machine M'
starts in "writing mode" and copies the initial
segment of its input Y from left to right on both
of its work tapes, until it encounters in Y a
symbol z & {0,153 ; M' rejects Y unless z =4 .
M'then changes (forever) into its "testing mode".
M' always interprets 4 as the command to change
the direction of movement for both of its work
heads {after moving both heads one cell further in
the old direction). M'

interprets 2 (3) as the

command to move work head 1 (2) by one cell in
the currently required direction. M' in testing
mode interprets a symbol ye€f£0,1} in Y as the
command to test whether the work head that moved at
the previous step reads the symbol y in his cell.
The input Y s in LI if all these tests have a
positive outcome, if the movements of the two work
heads of M' in testing mode consist of full
sweeps (in parallel) over the non-blank part of the

work tapes and if the input ends with a 4 .

As an example for words in LI we note that a

binary string XpeeeXpgYpee+¥y is a palindrome iff

the string xl...xn42yl...2yn4 is in LI .



For the Tower bound argument we will consider
words in LI of the following structure. Let X =
Xy++.X, be a binary string and Tet L = {11,12,.3

and R = {rl,rz,..} be two arbitrary sets of
subsequences of consecutive bits ("blocks") from
X . We assume that each block has Tength p and
that the blocks in L and R are listed in the
order of their appearance in X from right to

left. Let ]i,l"']i,p
symbo]é of.block ]i

. and be the

r. qe..r;
i,1 i,p

resp. r; in the order from

right to Teft. Let dL(i) (dR(i)) be the number

of bits between blocks 11 and 1 (ri and

i+l
ri+1) in X . Further let dL(O) (dR(O)) be the

number of bits in X to the right of block 11

(rl) . Then the following string YX,L,R is in L;:

YX,L,R =X "Xn42'"2211,12]1,2"'2]l,p3"'3
dL(O) times dR(O) times

3r1’13r1,2...3r1,p2...2212,1212’2...212’p3...3
dL(l) times dR(l) times

3r-2’l3r‘2,2...3r2’p ..... etc. (alternating through

all blocks of L and R )4

The proof of Lemma 2 1is easy (construct a
nondet. 1-tape TM that accepts the complement of
LI : it guesses the "reason" why a string is not
in LI and verifies this guess with its single work
head). ‘

We now sketch the proof of Lemma 3 (Lemmata 4
to 6 are needed for this proof). Assume for a con-
tradiction that there is a nondet. l-tape TM M
that accepts L; in time f(n) where f(n) =
o(nz/(1og4n <log log n)) .

We fix some canonical way of coding TM's ]
by binary strings. lﬁl is the length of the bi-
nary string that codes M . We will consider the

Kolmogorov complexity K(X{Y) of a string X
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relativ to a string Y (as in Paul [9]), where

K(XJY) :=min{I1M} | ™™ ¥ produces on input Y

the output X %Y and K(X) := K(X)€&) .

We now construct the input X"Z on which we
test TM M . We choose for X some binary string

with K(X) > IXt =:n (such X exist for every

n,as a simple counting argument shows). We choose

n s.t. n>>IMl (thus X 1looks Tike a random

string to M). Precise conditions on the size of n
will come out of the following arguments.

In order to define Z we partition X into

n' :=n/8¢log log n blocks of length 8-log log n.

We number these blocks in X from left to right by

binary sequences of length log n' in lexicograph-

ical order (we assume that n 1is chosen so that

Tog n' s a natural number). For e {l,..,log n'}

we say that two blocks are i-connected if their
associated binary sequences differ exactly at the
j-last bit. This induces a partition of the blocks

of X 1into sets Li and Ri : if blocks b b2

l’
are i-connected and bl is left of b2 in X

then we place b] in Li and b2 in R, . The

i
second part Z of the input has the form

_ Ny 00 N n n . .
Z= 4 Z1 4 22 ...4 2109 n' 4 . Z1 is defined
Npno A — s
such that X"4 Z1 4 = YX’Ll’Rl (see the defini
tion of YX,L,R in the preceding example). 22 is

an analogous command sequence that tells the pre-

viously considered 2-tape TM M' to check all

blocks in L2 .and R2 during one sweep in pa-
rallel of both work heads from left to right (head

1 checks the blocks in L, and head 2 checks the

2
blocks in R2 s this is done in alternation so that

both heads look in general at the same time at
quite different parts of X ). Zy is defined so

that x"4"z3"4 YX’L3,R3 (i.e. 7y tells M

to check the blocks in L3 and R3 in alternation



during one sweep of both work heads from right to
Teft). 7, describes like Z, a sweep of both
heads from left to right, where the blocks from L4
and R4 are checked in alternation. Etc.

It is obvious from the construction that X*Z
€ LI and that

1X*Zi< 10 n-log n . Thus the non-

det. 1-tape TM M accepts X°Z via some compu-

tation C with g(n) steps, where g(n) =

o(n2/(1ogzn-1og log n)) .

Lemma 4 (“Desert Lemma") For Tlarge enough n

there is an interval D ("desert") of T :=

n/(100-1og n) cells on the work tape of M and
there are two sets LD and RD , each consisting
of n'/2 - 2n/(100-log n-:log log n) blocks B8
of X, s.t. in computation C the work head of M
is always left (right) of D during those steps
where its input head reads from a block B in X

that belongs to Ly (RD) .

Sketch of the proof of Lemma 4: We write n for

n/{log n-log Tog n) . For large n there are less

than 3/100 blocks B 1in X s.t. in computation

C the work head of M moves over N or more
cells while its input head reads B . Therefore it
is sufficient to find an interval D, of 3n
cells on the work tape of M ( D will be its
middle third) such that

i) there are 3 n'/2 - N/100 blocks B in X
s.t. at some step of computation C the work head
of M is left qf D0 and simultaneously the in-
put head is in B and

ii) there are 2 n'/2 - 0/100 blocks B in X

s.t. at some step of computation C the work head
of M is right of D0 and simultaneously the in-

put head is in B .
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We define Dy as the leftmost interval on the
work tape of M that has property i) . Assume for
a contradiction that this interval D0 does not
satisfy property ii) . Define another interval D1
of length 37+l that consists of Dy together
with the next cell to the left of D0 . By defini-
tion there is a set T of 2A/100 blocks B in
X s.t. in computation C the work head of M is
always inside interval D1 at every step where its
input head reads from a block B in X that be-
Tongs to T . Let ¢ (cR) be a cell to the left
(right) of D, within distance n from D, s-t.
the work head of M scans this cell during at most
7/100 steps of C . Let S (SR) be the crossing
sequence for cell ¢ (cR) which récords for every
step of C where the work head scans this cell the
current machine state and the number of cells by
which the input head has advanced since the last
crossing of this cell (in binary). Both crossing
sequences together require only 4n/(100 -log n)
bits (according to Galil [4] the differences d;
of the input head positions that occur in S, (SR)
idd up to n , thus
n/100

= (1 + Tog d;) ¢ (1/100)(1+1og(100n/))
i =1

by the convexity of the log function).

We define X* to be a variation of X where
all blocks that belong to T have been "censored"
(i.e. substituted by equally long sequences of a
new symbol @ ). Let I be the inscription of the
interval between cells <L and R at that step
tO of computation C where the input head moves
off the last symbol of X . Let T® be the conca-
tenation of the blocks in T (in their natural
order from left to right). One can define an auxi-
liary TM P that produces the output T® from an

input that consists of XC , I , the initial parts



of SL and SR until step tg » the cell numbers
of L and Cr and the state and head positions
of M at step tO of C . Roughly P tries all
possible substitutes for the censored parts of in-

put XC

until it finds one for which M has a
computation that generates the same data as those
which are recorded in the input of P . To verify
the correctness of P's output we use a cut and

paste argument (here it is essential that § S

L 3
also record the current positions of the input

R

head). The existence of P implies that

K(TP IXC) < 10n/(100-1og n)} . On the other hand our
choice of X implies that K(T*|X") >
12n/(100-1og n) . This contradiction finishs the

proof of Lemma 4 .

The second part Z of the input has the im-
portant property that any two blocks bl,b2 of X
that are i-connected for some i ¢ log n' are
checked in immediate succession in Z (i.e. in
terms of the previously described 2-tape TM M'
work head 1 of M' checks all bits of one of
the two blocks and immediately afterwards work
head 2 of M' moves to the place where it has
recorded the other block and checks all its bits).
We call a subsequence of successive symbols of Z
an LD - RD pair if it consists of the commands to
“check in immediate succession two blocks where one
belongs to L, and the other to Rp ( Lp and
RD are the sets from Lemma 4). We need the follow-

ing purely combinatorial Lemma.

Lemma 5 Assume that the n' blocks of X have
been partitioned into three sets L, R, G . Then
there are at least min {IL1 , \RI} -1Gl-log n'
pairs of blocks s.t. one belongs to L , the other

to R and both are 1i-connected for some i¢ log n',

Case 1:

Proof: Induction on log n' . Set 1 := logn' .

For i =0,1 Tlet Hi be the subset of sequences
of length 1+1 that begin with i . The given par-
tition of the binary sequences of length 1+1 into
L, R, G induces partitions of Hi into Li’ Ri’
G; (for i=0,1).

min(IL;1 LIR;1) =IL 1 for 1 =0 and
i=1.

Then min(IL} ,IR1) = min(ILy} ,IRGI) +

min(lLll ,IRII) and the claim follows immediately

from the induction hypothesis.

Case 2: min(|L0| ,IROI) = Ll and
min(|L1| ,|Rll) = | Rﬂ
Since R, = 2! - |L0| - \Goi and at most

IRll + |Gll
1

elements of H1 are not in L1 , at

least 2° - |L0I - IGOI - IRII - IGll elements

of RO are (1+1)-connected with elements from
L1 . Further by inductjon hypothesis at least
and at

ILOI - IGOI-l L - R pairs inside H,

Jeast ‘Rl| - IGll-l L - R pairs inside H,;

are i-connected for some 1i£ 1 . Thus altogether

at least 21

1Gl-{1+1)

- 161-(1+1) » min(iLi ,IR)) -
L - R pairs are i-connected for some

ig 141 .

In our application of Lemma 5 we set L :=
lp s R:=Rp and G := {the remaining blocks of
XY . Ue derive in this way that there are at
least n'/2 - 20/100 - 4A/(100-log n) 3
n/(100-1og Tog n) Ly - Ry pairs in Z (for

large n ) .

Machine M cannot move within its time bound
too many blocks to different locations once they
are written down somewhere on the work tape. There-
fore it is intuitively plausible that for most of

the LD - RD pairs in Z , where some blocks b1



and b, are checked with b1 € lp and by e Rp s
the work head of M has to go close to the area
where it had originally written down these blocks,
i.e. close to the left end of desert D for
checking b1 and close to the right end of D
for checking b, (otherwise one could "fool" M
and make it accept strings that are not in LI).
The following Lemma verifies that this intuition

is correct. We write D], D, D. for the left,

m> “r

middle resp. right third of the desert D from
Lemma 4 .
Lemma 6 For at least 2/3 of the
n/(100:10g log n) Lp - Rp pairs in Z the work
head of M touches a cell left of D (right of
Dm) during those steps in computation C where

M's input head reads from that pair.

Proof (sketch): Assume for a contradiction

that for 1/3 of the LD - RD pairs in Z the
work head of M stays during those steps of
computation C where M's input head reads from
that pair always to the right of D] . Let T be
a set of /300 different blocks from Ly that
occur in these pairs (note that the same block
may occur in up to log n' Ly - Rp pairs). Let ¢
be a cell in D] that is scanned during at most
3/300 steps. Let Sc be a crossing sequence for
cell ¢ Tike in the proof of Lemma 4 . Thus the
information in Sc can be recorded with no more
than 2n/(300-log n) bits.

We write XC"zC for the variation of input
X"Z where all blocks that belong to 1T have been
censored. We use an auxiliary TM ¥ that computes
the concatenation T® of all blocks in T from
¢ and the final

xCa £C » S, » the number of cell
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machine state of computation C . Similarly as the
TM P in the proof of Lemma 4 this T™M B tries
successively all possible fill-ins for the cen-
sored blocks of T . A somewhat delicate cut and
paste argument shows that T is the only fill-in
that allows a computation of M on the resulting
¢ and halts

input which generates S_ on cell

o
in the same final state as computation C .
The existence of TM P

K(T_‘AI XCn ZC) <

implies that
3n/(300+1og n) . On the other
hand our choice of X

k@rixirly »

implies that
5n/(300-1og n) . This contradic-

tion finishs the proof of Lemma 6 .

Lemma 6 1implies that the head of M crosses
in computation C at least n/(300-log log n)
often the n/(300-Tog n) cells of D, - This
takes at least n2/(3002-1og n - log log n) steps.
On the other hand computation C uses by
assumption only g{n) = o(nz/(logzn -log log n)
steps. This contradiction finishs the proof of

Lemma 3 (Main Lemma).

Sketch of the proofs of Theorem 1 and Theorem 3 :

In the deterministic case a simpler proof and
--as we will see below-- a sublanguage L of LI
suffice. Fix a deterministic 1-tape TM M that

accepts L. . Assume for a contradiction that for

I
every c e W there is an infinite set N .S N
s.t. M accepts all inputs I € LI with 1lle Nc
in at most IIlz/c steps. Since M is determi-
nistic it processes the first part X of the in-
put X"Z independently from the choice of the
second part Z . Therefore we can wait with the

definition of Z until M has processed X . For



X we choose as before a string with K(X) > 1Xi

1/3

=: n . We cut X into blocks of length ¢ . The

“Desert Lemma" yields a "desert" D of f :=

n/cll3 cells on the work tape of M and sets L

1/2

D

and Ry of n/2 - 2n/c blocks each with

properties as in Lemma 4 . We then define Z s.t.
™z o= YX’LD’RD _ One might have to add some
padding to this input to make sure that its length
is in Nc , but this causes no probiem for the
estimate below. There are obviously

fr2 - on/cl/? 2 (for large c) 7/4 Lp - Ry
péirs in Z . Via Lemma 6 one sees again that for
at least 1/3 of these pairs the work head of M
crosses Dm while its input head reads from that
pair. Thus machine M usés at least ﬁz/ 34:3 =
n?/(36-c?/3)

ceeds M's time bound of |X“Zl2/c £ 16n2/c

steps. For large ehough ¢ this ex-

steps.

The preceding argument shows that in the de-
terministic case it is sufficient to consider a
somewhat simpler sublanguage L of LI where the
virtual heads of M' perform at most one sweep in

each direction.
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