
QUADRATIC LOWER BOUNDS FOR DETERMINISTIC AND 

NONDETERMINISTIC ONE-TAPE TURING MACHINES 

(Extended Abstract) 

Wolfgang Maass * ' * *  

Dept. of Mathematics and Computer Science Division 

University of California, Berkeley 

Abstract: We introduce new techniques for 

proving quadratic lower bounds for deterministic 

and nondeterministic i-tape Turing machines (al l  

considered Turing machines have an additional one- 

way input tape). In part icular we produce quadra- 

t ic  lower bounds for the simulation of 2-tape TM's 

by l-tape TM's and thus answer a rather old ques- 

tion (problem No.! and No.7 in the l i s t  of Duris, 

Gal i l ,  Paul, Reischuk [3]). Further we demo6strate 

a substantial superiority of nondeterminism over 

determinism and of co-nondeterminism over nonde- 

terminism for l-tape TM's. 

Hartmanis and Stearns [5] have shown that  

one can simulate a mul t i - tape TM (Turing machine) 

that runs in time t (n)  by a I - tape Trl that  runs 

in time O(t2(n)) .  This holds i f  both machines are 
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determinist ic  and i f  both are nondeterminist ic.  

However the question whether mul t i - tape TM's are 

rea l l y  subs tan t ia l l y  more powerful than l - tape 

TM's has been l e f t  open (except for  the case of 

TM's wi thout input tape; see below). In spi te of 

qui te a b i t  of work only nearly l i near  lower bounds 

have been achieved. Rabin [ I f ]  showed that there is 

some di f ference:  not every det. 2-tape TM that  

runs in real time can be simulated by a det. I - tape 

TM that  runs in real time (a TM M runs in real 

time i f  there is a constant c M s : t .  M spends at 

most c M steps before i t  reads the next input b i t  

resp. ha l ts ,  thus real time implies l i near  t ime). 

Wolfgang Paul introduced the notion of Kolmogorov 

complexity in to  computational complexity theory and 

used i t  to show that simulat ion of a real time det. 

2-tape TM by an "on- l ine"  det. l - tape TM requires 

t ime. [~ (n . log l /2n)  [g] .  His notion of "on- l ine"  

machine helps to keep the simulator on a "shorter 

leash". On the other hand i t  prevents the trans- 

la t ion  of the lower bound resu l t  in to  the fami l i a r  

terms of language acceptance ( i t  is only s i g n i f i -  

cant for  machines with large output).  

For nondeterminist ic TM's a l l  questions about 

the inf luence of the number of tapes on the compu- 

t ing  power have been set t led except for  2 tapes 
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versus I (according to Book, Greibach, Wegbreit [ I ]  

one can simulate any nondet. TM without time loss 

by a nondet. 2-tape TM). Concerning 2 tapes versus 

I Duris and Galil [2] proved that a real time det. 

2-tape TM cannot be simulated by a nondet. I-tape 

TM in real time, In Duris, Gal i l ,  Paul, Reischuk 

[3] the lower bound was improved to .(~(n-log log n) 

(apparently they have recently achieved ~ ( n .  

log n) ). 

The main disadvantage of a I-tape TM is the 

fact that i t  needs .('~(s.d) steps to move a string 

of s symbols on i ts  work tape over d cel ls ,  

while a 2-tape TM can do this in time O(s+d). This 

observation allows to derive easily quadratic lower 

bounds for a weak form of I-tape TM's that do not 

have an additional input tape (they receive the in- 

put on the work tape), see Hennie [6]. Such machine 

requires quadratic time to check whether a string 

is a palindrome. The I-tape TM with an extra one- 

way input tape - - th is  is the model that is con- 

sidered in the previously mentioned lower bound 

l i terature and which we w i l l  consider in this pa- 

per-- is quite a b i t  more powerful and can e.g. 

recognize palindromes in l inear time. In addition 

such I-tape TM has the option to choose a clever 

data structure for the representation of the input 

on i ts  work tape (this may make i t  unnecessary to 

perform during the computation many time consuming 

copying operations). A clever data representation is 

for example used to simulate a det. k-tape TM (for 

any k ) 2) with time bound t(n) by a det. 2-tape 

TM without a severe time loss in time O(t(n). 

log t (n))  (Hennie and Stearns [7]) .  In view of these 

facts the correct value of the optimal lower bound 

for two tapes versus one was somewhat dubious. 

In addition in the case of two tapes versus 

one for nondeterministic TM's one has to be aware 

that nondet. I-tape TM's are already quite power- 

fu l .  They accept already in l inear time NP-complete 

problems l ike 3-COLORABILITY. From the technical 

point of view such machines have the additional 

option to use "individualized" data structures for 

the representation of the input on their  work tape 

that are optimal for a part icular computation on a 

particular input. I t  turns out that nevertheless 

the Hartmanis/Stearns simulation [5] is optimal in 

the deterministic case and nearly optimal in the 

nondeterministic case. 

Theorem I There is a language that is accepted 

by a deterministic 2-tape TM in l inear (even real) 

time but which requires time ~ ( n  2) on any determi- 

n is t ic  l-tape TM. 

Theorem 2 There is a language that is accepted 

by a deterministic 2-tape TM in l inear (even real) 

time but which is not accepted in time 

O(n2/log5n) by any nondeterministic l-tape TM. 

Remark: In a preliminary version of this paper 

we proved somewhat weaker lower bounds (we showed 

that a l-tape TM cannot accept the considered 

language in time O(n2-~), for any 6 •  0 ). We 

are grateful to Zvi Galil and Joel Seiferas who 

pointed out that with a more careful choice of 

parameters our argument yields stronger lower 

bounds. Further we use Gal i l 's  suggestion [4] to 

save a log -factor by recording sequences of num- 

bers less than n in a more concise way (by their  

binary differences, one uses the convexity of the 

log function for the estimate of the total length). 
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We now compare machines tha t  have the same 

storage f a c i l i t y  (one work tape) but d i f f e r e n t  con- 

t r o l  s t ruc tu res  (de t . ,  nondet . ,  co-nondet . ) .  We 

wr i t e  DTIMEk(t(n)) and NTIMEk(t(n) ) f o r  the 

classes o f  sets tha t  are accepted in  time O( t (n ) )  

by det. resp. nondet, k-tape TM's (always wi th  an 

add i t iona l  one-way input  tape).  Known lower bound 

resu l t s  are NTIME2(n) ~ U DTIMEk((n" 
k ~ I 

log*n) 1/4) (Paul,  Pippenger, Szemeredi, T ro t t e r  

[10 ] ) ,  NTIME2(n) ~ DTIMEi(n I ' 1 )  (Kannan [7 ] )  and 

NTIME2(n) ~ DTIMEi(n I"22) (Maass and Schorr 

[8 ] ;  here the lower bound also holds f o r  l - t ape  

TM's w i th  a two-way input  tape).  

Theorem 3 Assume f (n )  = o(n 2) . Then 

NTIMEi(n) ~ DTIMEI( f (n))  . 

Theorem 4 CO-NTIMEi(n) ~ NTIMEl(n2/ log!n ) . 

To prove the preceding theorems we const ruc t  

a language L I f o r  which the fo l l ow ing  three 

lemmata hold. Theorem 2 and Theorem 4 fo l l ow  

d i r e c t l y  from these lemmata. The somewhat s impler 

proofs o f  Theorem I and Theorem 3 are sketched 

at  the end of  t h i s  paper. 

Lemma I L I is  accepted by a de te rm in i s t i c  

2-tape TM in  real t ime. 

Lemma 2 The complement of  L I 

nondet. I - tape TM in  real t ime. 

Lemma 3 (Main Lemma) Assume f ( n )  : 

o(n2/ log4n . l o g  log n) . Then 

is accepted by a 

L I ~ NTIMEI( f (n))  . 

The language L I consists o f  f i n i t e  sequen- 

ces of  symbols 0 ,1 ,2 ,3 ,4  and is def ined as 

fo l l ows :  

L I = ~ x 1 . . . X n Z l . . . z  k ~ x I . . . .  X n ( { O , l )  , z I = 

z k = 4 , V a V b ( ( l  ~ a < b ( k ^ z a = z b = 4 ^ 

V j ( a  < j < b 4 z j  ~ 4))  ~ (~{ j  | a <  j c b 

z j  : 2 } {  = ~ { j  ~ a • j < b ^ z j  = 3}~ : n ^ 

V j ( ( a  • j ( b ^  z j e  { 0 , I ~ )  ~ (Z j_ l  G { 2 , 3 )  and 

fo r  m := { { j '  { a < j '  ~ j - I  ^ z j ,  = Z j _ l ~  one 

has z j  = Xn+l_ m i f  the number o f  4 's  in  z l . . z  a 

is  odd and z j  = x m o t h e r w i s e ) ) ) }  

In order to understand the s t ruc tu re  of  L I 

i t  is  he lp fu l  to go through the proof o f  Lemma I , 

i . e .  to const ruc t  a det. 2-tape TM M' tha t  reco- 

gnizes words from L I in  real t ime. M' i n te rp re ts  

each symbol 0 ,1 ,2 ,3 ,4  as a command. Machine M' 

s ta r t s  in  " w r i t i n g  mode" and copies the i n i t i a l  

segment o f  i t s  input  Y from l e f t  to r i g h t  on both 

of  i t s  work tapes, u n t i l  i t  encounters in  Y a 

symbol z ~ ~0 , i ~  . M' re jec ts  Y unless z = 4 . 

M'then changes ( fo rever )  i n to  i t s  " t es t i ng  mode". 

M' always i n te rp re t s  4 as the command to change 

the d i r ec t i on  of  movement fo r  both of  i t s  work 

heads ( a f t e r  moving both heads one ce l l  f u r t h e r  in  

the o ld d i r e c t i o n ) .  M' i n te rp re ts  2 (3) as the 

command to move work head i (2) by one ce l l  in  

the c u r r e n t l y  required d i r e c t i o n .  M' in  tes t i ng  

mode i n te rp re t s  a symbol y ~ { O , l }  in  Y as the 

command to tes t  whether the work head tha t  moved at  

the previous step reads the symbol y in  h is c e l l .  

The input  Y is in  L I i f  a l l  these tests  have a 

pos i t i ve  outcome, i f  the movements of  the two work 

heads of  M' in  tes t i ng  mode cons is t  of  f u l l  

sweeps ( in  p a r a l l e l )  over the non-blank par t  o f  the 

work tapes and i f  the input  ends wi th  a 4 . 

As an example fo r  words in  L I we note tha t  a 

b inary  s t r i n g  x1 . . .XnY1 . . . y  n is  a palindrome i f f  

the s t r i ng  Xl . . .Xn42Y1. . .2Yn4 is in  L I . 

403 



For the lower bound argument we w i l l  consider 

words in L I of the fo l low ing  st ructure.  Let X = 

X l . . . x  n be a binary s t r i ng  and l e t  L : { I i , 1 2 , . . }  

and R : ~ r l , r 2 , . .  } be two a rb i t r a r y  sets of 

subsequences of  consecutive b i t s  ("blocks") from 

X . We assume that  each block has length p and 

that  the blocks in L and R are l i s t ed  in the 

order of  t h e i r  appearance in X from r i gh t  to 

l e f t .  Let l i , 1 . . . l i ,  p and r i , i . . . r i ,  p be the 

symbols o f  block I i resp. r i in the order from 

r i gh t  to l e f t .  Let dL( i )  (dR( i ) )  be the number 

of  b i t s  between blocks I i and l i +  I ( r  i and 

r i+  I )  in X . Further l e t  dL(O) (dR(O)) be the 

number of  b i t s  in X to the r i gh t  of  block I !  

( r l )  . Then the fo l low ing  s t r i ng  YX,L,R is in LI :  

YX,L,R : x I ..Xn42...2211~ ,~'21"~,2""211,p~..~,._~3""3 

dL(O) times dR(O) times 

3r. 2 221^ .21^ ^ .21^ 3...3 3r l ,13r l ,2" ' "  1,p~_~_~ z,1 z,z'" z,p~._,_..~ 

dL(1) times dR(l) times 

3r2 ,13r2 ,2 . . .3 r2 ,  p . . . . .  etc. (a l te rna t ing  through 

a l l  blocks of  L and R )4 

The proof of  Lemma 2 is easy (construct a 

nondet. I - tape TM that  accepts the complement of  

L I : i t  guesses the "reason" why a s t r ing  is not 

in L I and ve r i f i e s  th i s  guess with i t s  s ingle work 

head). 

We now sketch the proof of  Lemma 3 (Lemmata 4 

to 6 are needed fo r  th is  proof) .  Assume for  a con- 

t r ad i c t i on  that  there is a nondet, l - tape TM M 

that  accepts L I in time f (n)  where f (n )  = 

o(n2/(log4n dog log n)) . 

We f i x  some danonical way of  coding TM's 

by binary s t r ings.  L MI is the length of  the b i -  

nary s t r ing  that  codes M . We w i l l  consider the 

Kolmogorov complexity K(X~Y) of a s t r ing  X 

r e l a t i v  to a s t r ing  Y (as in Paul [ 9 ] ) ,  where 

K(XlY) : :  m i n { l ~ l  ] TM ~ produces on input Y 

the output X ~ and K(X) : :  K(X~E) • 

We now construct the input X~Z on which we 

test  TM M . We choose fo r  X some binary s t r ing  

with K(X) ~ IXl  =: n (such X ex i s t  for  every 

n ,as a simple counting argument shows). We choose 

n s . t .  n ~> IMl (thus X looks l i ke  a random 

s t r ing  to M). Precise condit ions on the size of n 

w i l l  come out of  the fo l lowing arguments. 

In order to define Z we p a r t i t i o n  X in to  

n' := n/8°log log n blocks of  length 8.1og log n. 

We number these blocks in X from l e f t  to r i gh t  by 

binary sequences of length log n' in lexicograph- 

ica l  order (we assume that  n is  chosen so that  

log n' is a natural number). For i~  ~! . . . .  log n ' }  

we say that  two blocks are i-connected i f  t h e i r  

associated binary sequences d i f f e r  exact ly  at the 

i - l a s t  b i t .  This induces a p a r t i t i o n  of the blocks 

of  X in to  sets L i and R i : i f  blocks b l ,b  2 

are i-connected and b! is l e f t  of  b 2 in X 

then we place b I in L i and b 2 in R i . The 

second part Z of  the input  has the form 

Z = 4AZin4~Z2 A .4 ~ .. Zlog n,^4 . Z I is defined 

such that X"4~Zi^4 = YX,Li,R I (see the defini- 

tion of YX,L,R in the preceding example). Z 2 is 

an analogous command sequence that te l l s  the pre- 

viously considered 2-tape TM M' to check a l l  

blocks in L 2 and R 2 during one sweep in pa- 

ra l le l  of both work heads from l e f t  to right (head 

I checks the blocks in L 2 and head 2 checks the 

blocks in R 2 ; this is done in alternation so that 

both heads look in general at the same time at 

quite different parts of X ). Z 3 is defined so 

that X~4nZ3n4 = YX,L3,R 3 ( i .e.  Z 3 te l l s  M' 

to check the blocks in L 3 and R 3 in alternation 
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during one sweep of both work heads from right to 

le f t ) .  Z 4 describes l ike Z 2 a sweep of both 

heads from le f t  to right, where the blocks from L 4 

and R 4 are checked in alternation, Etc. 

I t  is obvious from the construction that X Ẑ 

L I and tha t  IX~ZI~  10 n . log  n . Thus the non- 

det .  l - t a p e  TM M accepts X~Z v ia  some compu- 

t a t i o n  C w i th  g(n) s teps,  where .g(n)  = 

o (n2 / ( l og2n . l og  log n))  . 

Lemma 4 ("Desert Lemma") For large enough n 

there is an interval D ("desert") of ~ := 

n/(iOO.log n) cells on the work tape of M and 

there are two sets L D and R D , each consisting 

of n'/2 2n/(IOO.log n.log log n) blocks B 

of X , s.t. in computation C the work head of 

is always l e f t  (right) of D during those steps 

where i ts input head reads from a block B in X 

that belongs to L D (R D) . 

Sketch of the proof of Lemma 4: We write ~ for 

n/Clog n.log log n) . For large n there are less 

than ~/I00 blocks B in X s.t. in computation 

C the work head of M moves over ~ or more 

cells while i ts input head reads B . Therefore i t  

is suff icient to find an interval D O of 3~ 

cells on the work tape of M ( D wi l l  be i ts 

middle third) such that 

i )  there are @ n'/2 ~/I00 blocks B in X 

s.t. at some step of computation C the work head 

of M is l e f t  of D O and simultaneously the in- 

put head is in B and 

i i )  there are ) n'/2 - ~/I00 blocks B in X 

s.t. at some step of computation C the work head 

of M is right of D O and simultaneously the in- 

put head is in B . 

We define D O as the leftmost interval on the 

work tape of M that has property i )  . Assume for 

a contradiction that this interval D O does not 

satisfy property i i )  . Define another interval D I 

of length 3~+I that consists of D O together 

with the next cell to the l e f t  of D O . By defini- 

tion there is a set T of 2~/IOO blocks B in 

X s.t. in computation C the work head of M is 

always inside interval D I at every step where i ts 

input head reads from a block B in X that be- 

longs to T . Let c L (CR) be a cell to the l e f t  

(right) of D I within distance B from D I s.t. 

the work head of M scans this cell during at most 

~/I00 steps of C . Let S L (SR) be the crossing 

sequence for cell c L (CR) which records for every 

step of C where the work head scans this cell the 

current machine state and the number of cells by 

which the input head has advanced Since the last 

crossing of this cell (in binary). Both crossing 

sequences together require only 4n/(lOO-log n) 

bits (according to Galil [4] the differences d i 

of the input head positions that occur in S L (S R) 

add up to n , thus 
~/Ioo 
~,. (I + log di) .~ (~/100),(1+log(1OOn/~)) 
i =I 

by the convexity of the log function). 

We define X C to be a variation of X where 

al l  blocks that belong to T have been "censored" 

( i .e.  substituted by equally long sequences of a 

new symbol m ). Let I be the inscription of the 

interval between cells c L and c R at that step 

t O of computation C where the input head moves 

of f  the last symbol of X . Let T m be the conca- 

tenation of the blocks in T (in their natural 

order from le f t  to r ight). One can define an auxi- 

l ia ry  TM P that produces the output T n from an 

i npu t  t ha t  cons is ts  of  X C , I , the i n i t i a l  par ts  
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of S L and S R unti l  step t O , the cell numbers 

of c L and c R and the state and head positions 

of M at step t o of C . Roughly P tr ies a l l  

possible substitutes for the censored parts of in- 

put X C unti l  i t  finds one for which M has a 

computation that generates the same data as those 

which are recorded in the input of P . To verify 

the correctness of P's output we use a cut and 

paste argument (here i t . i s  essential that S L , S R 

also record the current positions of the input 

head). The existence of P implies that 

K(T n i x  C) • 10n/(1OO.Iog n) . On the other hand our 

choice of X implies that K(TnlX C) 

12n/(1OO.log n) . This contradiction finishs the 

proof of Lemma 4 . 

The second part Z of the input has the im- 

portant property that any two blocks bl,b 2 of X 

that are i-connected for some i ( log n' are 

checked in immediate succession in Z ( i .e.  in 

terms of the previously described 2-tape TM M' 

work head I of M' checks a l l  bits of one of 

the two blocks and immediately afterwards work 

head 2 of M' moves to the place where i t  has 

recorded the other block and checks a l l  i ts  bits). 

We call a subsequence of successive symbols of Z 

an L D - R D pair i f  i t  consists of the commands to 

'check in immediate succession two blocks where one 

belongs to L D and the other to R D ( L  D and 

R D are the sets from Lemma 4). We need the follow- 

ing purely combinatorial Lemma. 

Proof: Induction on log n' . Set l := log n' 

For i = 0,1 le t  H i be the subset of sequences 

of length l+l that begin with i . The given par- 

t i t i on  of the binary sequences of length I+I into 

L, R, G induces partit ions of H i into Li, Ri, 

G i (for i = 0,1). 

Case I: min(ILil , IRi l )  =|Lil for i = 0 and 

i = I . 

Then min(ILI ,|RI) = min(|L01 ,IRol) + 

min(JLiI ,JRll) and the claim follows immediately 

from the induction hypothesis. 

Case 2: min(IL01 ,IRoI) = ILoI and 

min(lL11 , I R i I )  = I R l l  

Since R 0 = 21 - I L o I  - IGoI and a t  most 

IR l l  + I G l l  e lements o f  H 1 are not  in  L 1 , a t  

l e a s t  21 - I LoI - IGoI - I R l i  - I G l l  e lements 

o f  R 0 are ( l + I ) - c o n n e c t e d  w i t h  elements from 

L 1 . F u r t h e r , b y  i n d u c t i o n  hypo thes is  a t  l e a s t  

ILo I  - IGoI ,1  L - R pa i r s  i n s i d e  H 0 and a t  

l e a s t  I R l l  - I G i I . 1  L - R pa i r s  i n s i d e  H I 

are i - connec ted  f o r  some i ~ 1 . Thus a l t o g e t h e r  

at least 21 - IGI-(I+I) ~ min(ILl ,IRI) - 

IGl-(l+1) L - R pairs are i-connected for some 

i ~ I+I . 

In our application of Lemma 5 we set L :: 

L D , R := R D and G :: {the remaining blocks of 

X) . !~e derive in this way that there are at 

least n'/2 - 2~/100 - 4~/(lO0.1og n) 

n/(1OO°log log n) L D - R D pairs in Z (for 

large n ) . 

Lemma 5 Assume that the n' blocks of X have 

been partitioned into three sets L, R, G . Then 

there are at least m i n [ l L l  , |RI~ - I G|.log n' 

pairs of blocks s.t. one belongs to L , the other 

to R and both are i-connected for some i ~ log n'. 

Machine M cannot move within i ts time bound 

too many blocks to dif ferent locations once they 

are written down somewhere on the work tape. There- 

fore i t  is in tu i t i ve ly  plausible that for most of 

the L D - R D pairs in Z , where some blocks b I 

406 



and b 2 are checked with b I ~  L D and b 2 ~  R D , 

the work head of M has to go close to the area 

where i t  had o r i g i n a l l y  wr i t ten down these blocks, 

i .e .  close to the l e f t  end of desert D for  

checking b I and close to the r igh t  end of D 

for  checking b 2 (otherwise one could " foo l "  M 

and make i t  accept str ings that are not in L i ) .  

The fo l lowing Lemma ver i f i es  that th is i n t u i t i o n  

is correct. We wr i te  D I ,  D m, D r fo r  the l e f t ,  

middle resp. r ight  th i rd  of the desert D from 

Lemma 4 . 

Lemma 6 For at least 2/3 of the 

n/(1OO.log log n) L D - R D pairs in Z the work 

head of M touches a cel l  l e f t  of  D m ( r igh t  of 

D m) during those steps in computation C where 

M's input head reads from that pair .  

Proof (sketch): Assume for  a contradict ion 

that for  1/3 of the L D - R D pairs in Z t h e '  

work head of M stays during those steps of 

computation C where M's input head reads from 

that pai r  always to the r igh t  of D 1 . Let ~" be 

a set of  ~/300 d i f f e ren t  blocks from L D that 

occur in these pairs (note that the same block 

may occur in up to log n' L D - R D pairs) .  Let c 

be a cel l  in D 1 that is scanned during at most 

~/300 steps. Let S c be a crossing sequence for  

cel l  c l i ke  in the proof of Lemma 4 . Thus the 

information in S c can be recorded with na more 

than 2n/(300.log n) b i ts .  

We wr i te  X CAZ C for  the var ia t ion of input 

XAZ where a l l  blocks that belong to ~ have been 

censored. We use an aux i l i a r y  TM ~ that computes 

the concatenation ~n of a l l  blocks in ~ from 

X CA Z C , S c , the number of cel l  c and the f ina l  

machine state of computation C . S imi lar ly  as the 

TM P in the proof of Lemma 4 th is TM ~ t r ies  

successive]y a l l  possible f i l l - i n s  for  the cen- 

sored blocks of ~ . A somewhat del icate cut and 

paste argument shows that ~n is the only f i l l - i n  

that allows a computation of M on the resul t ing 

input which generates S c on cel l  c and halts 

in the same f ina l  state as computation C . 

The existence of TM ~ implies that 

K ( ~ l  X Cn Z C) ~ 3n/(300.log n) . On the other 

hand our choice of X implies that 

K(~ max cmz C) ~ 5n/(300-log n) . This contradic- 

t ion f in ishs the proof of Lemma 6 . 

Lemma 6 implies that the head of M crosses 

in computation C at least  n/(3OO.log log n) 

often the n/(3OO,log n) ce l ls  of D m . This 

takes at least  n2/(3002.1og n . log  log n) steps. 

On the other hand computation C uses by 

assumption only g(n) = o(n2/(log2n -log log n) 

steps. This contradict ion f in ishs the proof of 

Lemma 3 (Main Lemma). 

Sketch of the proofs of Theorem I and Theorem 3 : 

In the determinist ic case a simpler proof and 

--as we w i l l  see below-- a sublanguage L of L I 

suf f ice.  Fix a determinist ic l - tape TM M that 

accepts L I . Assume for a contradict ion that for  

every c ~ there is an i n f i n i t e  set Nc~ 

s . t .  M accepts a l l  inputs I E L I with I I ! ¢ N  c 

in at most i l i 2 / c  steps. Since M is determi- 

n i s t i c  i t  processes the f i r s t  part X of the in-  

put XnZ independently from the choice of the 

second part Z . Therefore we can wait with the 

de f i n i t i on  of Z unt i l  M has processed X . For 
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X we choose as before a str ing with K(X) ~ IXl 

: :  n . We cut X into blocks of length c I/3 . The 

"Desert Lemma" yields a "desert'! D of ~ := 

n/c I /3 cells on the work tape of M and sets L D 

and R D of ~/2 2n/c I /2 blocks each with 

properties as in Lemma 4 . We then define Z s. t .  

X~Z = YX,LD,R D . One might have to add some 

padding to this input to make sure that i ts  length 

is in N c , but this causes no problem for the 

estimate below. There are obviously 

~/2 2n/c I/2 ~ ( fo r  large c) ~/4 L D - R D 

pairs in Z . Via Lemma 6 one sees again that for 

at least I /3 of these pairs the work head of M 

crosses D m while i ts  input head reads from that 

pair. Thus machine M uses at least ~2/ 3-4.3 = 

n2/(36-c 2/3) steps. For large enough c this ex- 

ceeds M's time bound of IXnZ{2/c ~ 16n2/c 

steps. 

The preceding argument shows that in the de- 

terminist ic case i t  is suf f ic ient  to consider a 

somewhat simpler sublanguage L of L I where the 

v i r tual  heads of M' perform at most one sweep in 

each direction. 

[ I ]  

[2] 

REFERENCES 

R.V. Books S.A. Greibach, B. Wegbreit, Time 

and tape bounded Turing acceptors and AFL's, 

J. Comp. Syst. Sci. 4 (1970), 606 - 621 

P. Duris, Z. Gal i l ,  Two tapes are better than 

one for nondeterministic machines, 

Proc. 14th ACM STOC (1982), I - 7 

[3] 

[4 ]  

[5 ]  

[6 ]  

[7] 

[8 ]  

. [9] 

[ io] 

[11] 

P. Duris, Z. Ga l i l ,  W.J. Paul, R. Reischuk, 

Two nonl inear lower bounds, 

Proc. 15th ACM STOC (1983), 127 - 132 

Z. Gal i l ,  private communication 

J. Hartmanis, R.E. Stearns, On the computa- 

tional complexity of algorithms, 

Trans. Amer. Math. Soc. 117 (1965), 285 - 

306 

F.C. Hennie, One-tape, o f f - l ine  Turing ma- 

chine computations, 

Inf .  and Control 8 (1965), 553 - 578 

F.C. Hennie, R.E. Stearns, Two-tape simula- 

tion of multitape Turing machines, 

J. ACM 13 (1966), 533 - 546 

W. Maass, A. Schorr, Speed-up of I-tape 

Turing machines by bounded alternation, 

in preparation 

W.J. Paul, On-line simulation of k+1 tapes 

by k tapes requires nonlinear time, 

Proc. 23rd IEEE FOCS (1982), 53 - 56 

W.J. Paul, N. Pippenger, E. Szemeredi, W. 

Trotter, On determinism versus nondetermi- 

nism and related problems, 

Proc. 24th IEEE FOCS (1983), 429 - 438 

M.O. Rabin, Real time computation, 

Israel J. of Math. I (1963), 203 - 211 

408 


