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We study approximation schemes for computing minimal coverings by nonconvex
objects in one dimension. This problem arises, for instance, in the context of motion
planning for robots. In this paper we describe a polynomial approximation scheme
for this strongly NP-complete problem. For this purpose, we develop a general
method—the shifting strategy—nested applications of which yield such a scheme
(polynomial schemes for strongly NP-complete problems are quite rare). With some
additional effort, the shifting strategy leads to algorithms that are of practical
interest in that their running time is bounded by low-degree polynomials. © 1987

Academic Press, Inc.

1. INTRODUCTION

In this paper we study approximation algorithms for some covering
problems that arise in motion planning for robots. These covering problems
are of particular mathematical interest since they typically require covering
points by a minimal number of objects that are nonconvex. The corre-
sponding problems of covering with convex objects are usually easier to
analyze. For instance, we were able to derive polynomial approximation
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schemes for numerous convex covering and packing problems [3]. When we
employ the same technique in the nonconvex case, the scheme derived is
exponential in a nonconvexity parameter (later to be referred to as “sparse-
ness”).

The nonconvex objects studied in this paper are rings, i.c., the region
enclosed between two concentric spheres of radii r;, », with r, < r,. In this
case the nonconvexity parameter is the ratio between the inner radius r,
and the width r, — r;. A motivation for studying this problem arises in the
planning of motion for mobile robots so that all objects are reachable. The
construction of a robot is characterized by a pivot support for an extendible
arm. The planar region accessible by a robot’s arm will typically resemble a
ring around the support pivot. In this case, any object is placed between the
minimum and maximum range of the arm can be reached by the robot.
Since accelerating or stopping a mobile robot is a relatively slow process,
we will be interested in how to identify the minimum number of placement
positions, such that all objects are accessible (see [13] for additional details).

Increased flexibility of the robot is translated, in terms of the geometry of
the ring-like accessibility range, to decreased inner radius of the ring
compared to its width. Curiously, this smaller ratio between inner radius
and width leads also to decreased complexity of the placement problem.

In this paper, we focus on the one-dimensional case of the considered
covering problem. This ring cover problem proved to be hard even when
restricted to one dimension [11], while covering by convex objects, i.e.
intervals, is trivial in one dimension. Therefore, it provides an excellent
study ground where we can develop approximation tools for the nonconvex
case. In one dimension the rings are pairs of identical intervals at a fixed
distance apart. The problem is thus to cover objects on a line with a
minimum number of such interval pairs.

We shall refer to the objects to be covered as “points,” to the pair of
closed intervals of length w each and 2r apart as a “ring” of size (r, w),
and to the quantity r/w as “sparseness” (see Fig. 1). The set of points is
denoted by N, and its size by n. We denote by D the diameter of the ring,
2r + 2w, by I the interval in which the points to be covered are contained
and by [x] the integer ceiling of a real number x (i.e., the smallest integer
larger than or equal to x). The problem of finding the minimum number of
rings covering points in [ is referred to as the ring cover problem throughout
the paper.

The ring cover problem has interesting complexity aspects. It was proved
strongly NP-complete by Maass [11] even when all rings are identical —of
size {r, w)—but polynomial for each fixed value of the sparseness r/w.
The fact that the problem is strongly NP-complete means that if the
problem parameters, such as r, w and r/w, were given in unary encoding as
part of the input there would still be no algorithm polynomial in the input
length that solves the problem, unless NP = P. (For a comprehensive
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FIGURE 1

review of the theory of NP-completeness the reader is referred to Garey
and Johnson [2].)

Once a problem has been identified as NP-complete, it is unlikely that
one can find a fast (i.e., polynomial) algorithm that delivers the optimal
solution. It may still be possible, however, to find polynomial algorithms
that deliver approximate solutions. The quality of such solutions is mea-
sured in terms of the relative error. Formally, let /P be a given problem
instance, |OPT(IP)| the value of the optimal solution, and [H(IP)| the
value of the solution for a heuristic algorithm H. Then,

|[H(IP)| —|OPT(IP)]|
} |OPT(1P)]|

sup

IPe problem
instances

is called the worst case error. We say that a heuristic is a §-approximation
algorithm for some 8 > 0, if the worst case error is bounded by 8. (1 + 8) is
also called the performance ratio of the algorithm (for a minimization
problem).

One can easily devise a 1-approximation algorithm for the ring cover
problem by placing one ring at a time with its left interval’s left border
placed on the leftmost point yet uncovered. In order to see why the worst
case error of this algorithm is bounded by 1, we consider the related
problem of covering with the minimum number of identical (single) inter-
vals, or one-dimensional disks. This is easily solvable by placing the left end
of the disk on the leftmost point yet uncovered, and repeating until all
points are covered. Since the number of rings needed to cover all points
does not exceed the number of disks needed, and the number of disks is at
most twice the minimum number of rings, the result follows easily. More
elaborate agruments are used in section 5 to concoct a j-approximation
algorithm that takes O(min (n°, n* - r/w)) steps. By now, a natural ques-
tion is how much can the performance improve; that is, whether there is an
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e-approximation algorithm for ¢ < 1 and whether there is some inherent
lower bound on e. This question is related to the existence of a polynomial-
time approximation scheme, that is, a family of algorithms such that for
every ¢ > 0 there is an algorithm in the family delivering an e-approximate
solution in polynomial time. If the running time of such e-approximation
algorithms depends also polynomially of 1 /e, then the scheme is called fully
polynomial. It has, however, been proved by Garey and Johnson [2] that no
such fully polynomial approximation scheme exists for strongly NP-com-
plete problems, unless P = NP. (This proof requires that the optimal value
be bounded by a polynomial in the problem length. This is certainly the
case for the ring cover problem—the optimum never exceeds n.) For
strongly NP-complete problems it may be possible to find a polynomial
e-approximation scheme that depends exponentially on 1/e, but is poly-
nomial in all other problem parameters. Such schemes, however, are quite
rare. One such scheme is reported by Ibarra and Kim [7] for a generaliza-
tion of the knapsack problem. Another independent work by Baker [1],
describes polynomial schemes using a technique similar to ours for prob-
lems on planar graphs. Other schemes proposed [9], [10] are what we call
“asymptotic” polynomial approximation schemes in that the procedure
described works only for problem instances with input size > n,, where
no = ny(1/€) is growing with 1 /e. Instances of size < n, are handled using
different methods such as enumeration that ensure e-approximation while
are still polynomial for fixed e Recently approximation schemes were
devised for two strongly NP-complete scheduling problems [5], [6]. The
technique used is called dual approximation since it exploits a dual relation-
ship between those problems and some bin packing problems.

The main result of this paper (Sect. 4) is the existence of a polynomial
time approximation scheme for the considered strongly NP-complete ring
cover problem. We also give particularly efficient approximation algorithms
for special classes of problem instances.

The plan of the paper is as follows: in Section 2 we describe the shifting
strategy that is the fundamental building block of all our approximation
algorithms. When r/w is relatively small, we propose in Section 3 an
approximation scheme that has running time exponential in r/w, but runs
faster than both the optimal algorithm and the polynomial time approxima-
tion scheme for small r/w. Section 4 describes the above-mentioned
polynomial approximation scheme. In the subsequent two sections we
describe algorithms of practical interest in that their running time is
bounded by low degree polynomials. The algorithm in Section 5 works for
arbitrary r/w and guarantees a bound on the absolute error divided by the
optimum, called relative error, of at most ;. For r/w < 1/2, we propose in
Section 6 an approximation scheme that is much faster than the general
scheme. Section 7 is a summary.
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2. THE “SHIFTING” STRATEGY

All the algorithms presented in this paper make use of the shifting
strategy. The basic idea of this strategy is the conversion of solutions
derived by a “local” algorithm on certain bounded intervals to an ap-
proximate solution to the “global” problem (that covers all points). The
shifting strategy allows us to bound the error of this simple approach by
repetitive applications of it, followed by the selection of the single most
favorable resulting solution. Such a strategy adds only a multiplicative
factor to the algorithm’s running time.

Let the set N of the n given points be enclosed in an interval I and let /
be a positive integer. In the first phase the interval I is subdivided into
intervals of length D each, with the possible exception of the leftmost and
rightmost subintervals that can be shorter. Each such subinterval will be
considered left closed and right open. These subintervals are then con-
sidered in groups of / consecutive intervals resulting in intervals of length
! - D each (again with the possible exception of the leftmost and rightmost
such intervals). For any fixed subdivision of I into intervals of length D,
(see Fig. 2 for an illustration) there are ! different ways of grouping the
intervals of the partition into periods of length / - D. These partitions can
be ordered such that each can be derived from the previous one by shifting
the cuts to the right over distance D. Repeating the shift / times we end up
with the same partition we started from. We denote such / distinguished
partitions by S,, S, ..., S;. We shall refer henceforth to all intervals created
by the partitions as / - D-intervals with the interpretation that their length is
! - D or less.

Let A be some algorithm that delivers a solution—i.e., a set of rings that
covers all given points—in any /- D-interval (or shorter). For a given
partition S, let A(S;) be the algorithm that applies algorithm A to each
interval in the partition S, and outputs the union of all rings used to cover
these intervals. Such a set of rings is clearly a feasible solution to the global
problem defined on I. This process of finding a global solution is repeated
for each partition S;,i =1,2,...,/ The shift algorithm S,, defined for a
given local algorithm A, delivers the set of rings of minimum cardinality
among the / sets delivered by A(S;),...,A(S)).

{-D D

| ISR T U ST N NN T MY N SN VN T SN NN U SO

FiG. 2. Illustration of one partition to intervals of length / - D, where / = 4.
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Let the performance ratio of algorithm S, be denoted by rs,, ie.,

N 0/))]
. = Lo ninll /i
A . { pwblem} |OPT(1IP)]|.
instances

We now prove the shifting lemma.

LemMA 2.1 (the shifting lemma).

1
wenfi+ ) e

where r, is the performance ratio of the local algorithm A.

Proof. 'The proof uses the idea that if for one partition S; the resulting
solution delivered by the algorithm A(S;) has large error associated with it
(typically because most of the points of N lie close to the cuts of the
partition), then there is another partition S, such that the solution delivered
by A(S;) has a small error associated with it. Technically, this is proved by
producing an upper bound on the sum of errors of the solution delivered by
all algorithms A(S,) for i = 1,2,..., 1

By the definition of r, we have

|A(S) | < ry- JZS |OPT, |, (2.2)

where |OPT,| is the number of rings in an optimal cover of the points in
interval J and “J € §;” indicates that interval J is an /- D-interval in
partition S;.

Let OPT be the set of rings in an optimal solution and OPT®, ..., OPT
the set of rings, in OPT, containing points in two / - D-intervals (that must
be adjacent) in the S, S,,..., S, partitions, respectively. It can easily be
seen that (Fig. 3)

Y. |OPT,| < |OPT| +|OPT®|. (2.3)
Jin S;

F16. 3. For each given partition §; there is a different set of rings that cover points in two
adjacent intervals. The shaded rings are the ones in the set OPT',
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Due to the geometric design of the partitions, each with cut points at a
distance of at least D from the others, there can be no ring in the set OPT
that contains points in two adjacent intervals in more than one partition.
Therefore, the sets OPT®, ..., OPTY of rings in the optimal cover are
disjoint. It follows that

{
Y (JOPT} +|OPT?|) < (/ + 1) - |OPT. (2.4)
i=1
(2.3) and (2.4) imply

1 U 1
min Y, |OPT,| < —- Z( ho |0PT,|) < (1 + —)|OPT|. (2.5)
i=leend pin s, I i\ e, /

Joining the inequality (2.5) with (2.2) we derive that

1
1S, | = _min /|A(S,)[ <ty (1 + 7) - |OPT|, (2.6)

.....

which establishes (2.1). Q.E.D.

3. AN e-APPROXIMATION SCHEME FOR r/w BOUNDED

Practical applications of the 1-dimensional ring cover problem would
often use rings with bounded sparseness. The consideration of the case
where r/w is bounded, is of interest for the sake of algorithmic analysis as
well. For each given distribution of n points there is a bound on r/w
beyond which the ring problem becomes very easy. Once the ring width w
is smaller than the smallest gap between any pair of points, any ring could
cover at most two points. This version of the problem can be solved in
polynomial time: All rings in this case can cover either one or two points.
We delete the points which cannot be covered by a ring covering any other
point; the remaining problem of choosing a set of rings covering two points
each can be represented as an edge cover problem (choose a subset of
mimimum size of the edges of a graph, such that all vertices of the graph
are adjacent to at least one edge in this subset). The edge cover problem can
be solved in time 0(‘/|7| |E]), using the maximum matching algorithm (see
[12] for the maximum matching algorithm), where |V| is the number of
vertices and |E| the number of edges. Note that in the specific graph
described here, the maximum degree of a vertex is 4. As a result, |E| < 4|V
= 4n. It follows that one can solve this edge cover problem in O(n'?).

Once r/w is treated as fixes, there is a polynomial algorithm available
(see Maass [11]). Nevertheless, the running time of that algorithm,
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O(n'S1"/"1+18 . 1r /)% . log n), makes it impractical even for moderately
small values of r/w. For instance, for r/w = 1, the optimal algorithm runs
in time exceeding O(n>*). Therefore, there is clearly a need for an algorithm
that could deliver a solution, if only approximate, in reasonable running
time.

The algorithm used involves the shifting strategy described in Section 2.
The interval I, in which the set N of points is placed, is subdivided into
intervals of length / - D, where / = [1/¢], and & > 0 is the prescribed bound
on the worst case error. In each interval of length /- D we employ an
optimal algorithm denoted by B as the “local” algorithm. Each / - D-interval
can be completely covered by a collection of rings tightly packed next to
each other with minimal overlap, using no more than [//2]- (D/w] + 1)
rings. We call such collection a “compact” packing. It is enough to
enumerate all sets of ring positions of size no larger than that quantity and
select the smallest such subset that is a feasible cover; this essentially
describes Algorithm B. This algorithm is obviously exponential in both r/w
and /. (This fact will be established more precisely in the proof of Lemma
3.2.) Its exponential dependence on r/w is, however, far less serious than it
is for the optimal dynamic programming algorithm in Maass [11]. The
following lemma will be used in the proof of Lemma 3.2.

LEMMA 3.1. We can verify a guess that at most K rings are required to
cover the n points in an interval by examining only K - (%) covers each at
K steps at most. If the guess is correct the procedure will result in
identifying a minimum cover in K*(¥') <2 - (2n)¥ steps at most.

Proof. We may assume, without loss of generality, that for each ring in
a cover at least one of the two left borders of its two w-intervals coincides
with one of the n given points it contains, i.e., each ring is “right justified.”
Therefore, the n given points correspond to at most 2 ring positions that
have to be considered (Fig. 4). By preprocessing the data we can obtain a
list of the 2n ring positions and specify for each ring the leftmost and
rightmost point in each of the pairs of intervals. This can be done in time
O(n - log n). Using enumeration we consider all possible subsets of rings
where the number of rings in each subset does not exceed K. The number
of such subsets in the interval is bounded by IX (?") < K(¥"). (The

Fas P

-+ 2r

Fic. 4. Possible locations of border points.
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inequality is immediate since we can assume K < n.) The feasibility check
for a given set of rings can be executed in time linear in the number of rings
in the set: Recall that each ring is represented by the two pairs of leftmost
and rightmost points in each of its two w-intervals (e.g., (4, 7; 10, 11)
indicates that the ring covers the points indexed by 4, 5, 6, 7, 10, 11). For a
set of rings that are given in this representation (sorted by the leftmost
point covered by each ring) one can check in linear time whether they cover
all points in a considered interval. This may be done as follows. First one
computes in linear time the union of the left intervals of the rings (again in
terms of intervals of indices of given points that are covered), where two
intervals are merged into one larger interval if they leave no point un-
covered in between. Then one inserts analogously in linear time the right
intervals of the rings. The considered rings form a feasible cover of the
points in the respective interval J, if the constructed union of the intervals
consists of one interval of indices that starts with the index of the leftmost
point in J and ends with the index of the rightmost point in J. The number
of steps for the examination of each cover is hence at most K and the
number of covers examined at most K(%"). The total number of steps is
bounded by K2(2") as claimed. Now

2n K

But, K/(K — 1)! < 2, so the statement of the lemma is proved. Q.E.D.

(2n)*.

LemMMA 3.2. The running time of the shift algorithm Sy is bounded by

1 :
ol = (2n)[l/2£] ([2r/wl+3) )
€

Proof. We consider a “compact” covering in the ith /- D-subinterval
containing n; points. Such a subinterval can hence be covered by at most
L, = min{[l/2] - D/w] + 1), n;} rings. (Note that D/w + 1 =2r/w +
3.) By Lemma 3.1 the positions of these rings can be selected from a set of
at most 2n,; ring positions. Furthermore, we can find the minimum cover of
the points in no more than L? - () or O((2n,)™). We now define the
quantity L = min{[//2]([2r/w] + 3), n}, and note that L > L, for all i. It
follows that the total running time summed up for all subintervals,
O(X,(2n,)t), does not exceed O((2n)L). Finally, we substitute [1/¢] for /,
so the running time for each of the / partitions of I is at most

0((2”)“/251([2’/W1+3)). (3.1)
Q.ED.
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Though the running time of the shift algorithm is still exponential in the
sparseness, it is faster than the dynamic programming optimization al-
gorithm for e-approximate solutions with & > 0.07. For r/w < 2, the run-
ning time of this shift algorithm is considerably better than that of the
general polynomial approximation scheme described in the next section.

4. A POLYNOMIAL APPROXIMATION SCHEME

The scheme presented in the previous section is not a polynomial
approximation scheme since the running time depends exponentially on the
sparseness /w. This is due to the local algorithm used in the shift strategy
that solves the problem optimally in each interval of length /- D. In this
section we circumvent this difficulty by using an approximation algorithm
from another approximation scheme as the local algorithm. This is done by
partitioning further each interval of length /- D to sets of subintervals with
the property that a compact covering of each of these sets of intervals does
not take more than O(/?) rings. Therefore one can find an optimal cover
for these sets of intervals by enumerating all possible sets of rings with no
more than O(/?) rings in a set. This procedure removes the exponential
dependence on r/w in the running time of the optimal local algorithm, and
replaces it with the exponential dependence on O(/*). We apply this
“local” polynomial approximation scheme for r/w > 1, otherwise the
scheme described in the previous section is used.

In this local approximation scheme the parameter / of the shift algorithm
is set equal to [3/e]. The local algorithm parametrized by /, call it C(/),
delivers an approximate solution in intervals of length /- D or less. Each
such interval is subdivided to K intervals of length 2» + w each (where the
last one might be shorter), and each of those is further partitioned to
subintervals of length / - w each. All these intervals are considered left-closed
right-open. Recalling that D = 2r + 2w, we note that K = [ID/(2r + w)]
<[4 /] since r > w.

We denote the collection of all K, leftmost /- w-intervals in the (2r +
w)-intervals by U, ; (Fig. 5). The next set of /- w-intervals, adjacent to the
previous one to its right, is denoted by U, ; the next by U y, etc., up to U ,

{-D >

- 2rvw —» -—
0w

FIG. 5. The subdivision of the / - D-interval into intervals of length /- w with K = 4. The
union of the (disjoint) intervals marked by the wavy line is U; ; nd the union of the underlined
intervals is U} ;.
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with g =[Qr + w)/(I- w)] (see Fig. 5). The sets of intervals U, ;, i =
1,..., O have the important property that any ring with one of its w-inter-
vals intersecting in an /- w-interval of U;; must have its other w-interval
intersecting in U; ; or in an adjacent / - w- 1nterva1 of U_;,orof U,y (at
a distance of 2r + w away). We now consider all pos51b1e /-1 shrfts of the
! - w-intervals by distance w. Given i € {1,...,q} and s € {2,...,/} we
define U, , to be the set of intervals that results from shifting all intervals in
U, by drstance (s — 1) - w to the right. An alternative definition of U, |
vrews it as the union of all K intervals of length /- w (or less for the
rightmost one) whose endpoints are at distance (s — 1) - w + j(2r + w) for
j=1,..., K, from the left end of the /- D-interval. By including the set,
call it U , of those K (s — 1) - w-intervals that lie leftmost in the 27 + w)-
intervals, we make sure that foreverys = 1,..., / thesets U , U, ,,..., U, ,
form a partition of the considered interval of length /- D.

The local algorithm C(/) is an approximation algorithm which belongs to
a polynomial approximation scheme for bounded intervals. It consists of
solving optimally for each set of intervals U, | for i =0,1,...,¢9, s=
1,..., I. By construction, each set U, , consists of at most K [ - w-intervals.
Therefore it can be completely covered by [K /2] - I rings which is no more
than /2 rings. Let an optimal set of rings covering U, ; be denoted by
OPT, ,. For each shift s, U/_,OPT, | is a feasible ring cover for the /- D
1nterva1 The local algorithm C(/) dehvers as a solution the set of such rings
of minimum cardinality compared to all possible shifts. More precisely, let
5 be the shift such that ¥ (JOPT, | = min,_, = X7 _oJOPT, |, then the
solution set delivered by the local algorithm is UL ,OPT, ;. (Note that a
solution that is at least as good could be derived by taking s for which
min,_; JUZL,OPT, |is attained).

.....

THEOREM 4.1. (a) for r > w, choosing | = [3 /€], the relative error of the
algorithm Sc;y is bounded by e:

|SC(I)|

1 2
<[1+ =] <1+e
OPT] ( 1) ’

(b) The running time of Scy, is at most o - 2n)") (i.e.
O((1/€2)2n)3/*1)).

Proof. (a) It suffices to show that the performance ratio of the local
algorithm, r¢(,), is bounded by (1 + 1/7), since then it follows from Lemma
2.1 that

|Sea]

1 1)\?
Sl STep|l+ 7)< |1+ 7) <1+e (4.1)
|OPT| I !
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Let OPT be an optimal set of rings (of minimum cardinality) cc cevermg the
points in an interval of length /- D (or less). We denote by OPT" the sets
of those rings in OPT that contain points in two adjacent U, ,i=1,...,4,

for shifts s = 1,2,..., . Note that the sets OPT ", OPT ", . ., OPT" are
disjoint, since the “rmg phase,” 2r + w, is equal to the length of each of the
K subintervals in the considered (/- D)-interval. Let the optimal set of
rings covering the points in U, ..., U, , for shift s be denoted by
OoPT, ,..., OPTM, respectively. Now,

q
S |OPT, | <[OPT| +[OPT |, s=1,...,1, (4.2)
i=0

since the optimal solution, OPT, on the /- D-interval can be split into
individual feasible covers for each set U, ;. This holds due to the following
argument. Let Q, . be the set of rmgs in OPT intersecting U, ;- Then

Qs = |OPT and adding all these cardinalities ylelds |OPT|

ish
+|OPT | since only the rings in OPT” are counted twice: hence the
inequality. Repeating arguments similar to the ones in Lemma 2.1 we find a
shift § for which the following holds:

| OPT, ,

q I
[+ LOPT < T
i=0 =

|| M.n

< 1-|oPT| + Z!Gﬁ(”|S(1+1)-|6ﬁ\. (4.3)
s=1

Consequently, the approximate solution value in each /- D- interval does
not exceed (1 + 1//)-|OPT|, and rq;y <1+ 1/1 Substituting this in-
equality in (4.1) we get the desired result.
(b) The points in each set of intervals U, , can be covered by at most
[2 K -1 rings, using “compact” covering, where as previously indicated
= [ID/(2r + w)] < [4]]. Each ring can be chosen such that at least one
of the points in U,  is on one of its two left borders. Invoking Lemma 31
with number of rlngs K = min{[1K] -/, n; ), where n, denotes the
number of points in U, ,, we need at most O((2n, )[¢/2X1" 1 ) steps to find
the minimum cover of U, ;. This is repeated for all sets Up, s Usss-- s Uy s
and for all / shifts. Hence the total running time of algorlthm C() does
not exceed O(/ - (27)!4/X1°) for 7 the number of points in an interval of
length /- D. Since K < [%/], this expression is bounded by
O(I(27)1A/DIG/HMY for each I - D-interval and by O(/ - (2n)!¢/21E/DNV)
for all intervals. This is repeated for all / partitions. Substituting [3/¢] for /,
we derive the stated result. Q.E.D.
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5. MoORE EFFICIENT LOoCAL ALGORITHMS YIELD FASTER
APPROXIMATION ALGORITHMS

In this section we sketch a method that allows us to improve the time
bound for one of our previously described approximation algorithms. The
preceding algorithms used the shifting strategy in order to reduce a global
covering problem to a local covering problem. In the case where the local
covering problem was solved optimally it was done via an enumeration of
all possible solutions. In many cases there exist substantially faster optimal
local algorithms that one can use in order to get a more efficient approxi-
mation algorithm for the global covering problem.

We sketch this approach here for the case of 1-approximation algorithm

for the ring cover problem. The 1-approximation algorithm from the
polynomial approximation scheme in Section 4 yields time bound of
O(n*%). We show here that with the help of a more efficient local algorithm
one gets a i-approximation algorithm of time complexity O(min(n®, n* -
r/w)).

The new !-approximation algorithm uses again the shifting strategy to
reduce the global covering problem to a local covering problem for intervals
of length 2 - D (where D = 2r 4+ 2w). For the local covering problem we
use instead of the time consuming enumeration algorithm a more efficient
algorithm that constructs an optimal covering of n given points in an
interval of length 2 - D by rings of size (r, w) in O(min (7> n* - r/w))
steps. This local algorithm makes use of some simple facts about the
geometrical structure of optimal local coverings in intervals of length 2 - D.

The more efficient local covering algorithm runs repeatedly through two
phases. In the first phase it places up to four rings G,, G,, G,, G, in an
arbitrary fashion (but with one of the given points on the left end of one of
the two intervals of each of them; there are O(n*) possibilities of doing
this). If the only points that are uncovered lie either between the two
intervals of G; or between the two intervals of G, then the algorithm covers
in the second phase these remaining points via algorithm F of Lemma 5.1
in O(min (7, r/w)) steps. Otherwise, the first phase will be repeated for
another collection of four rings. In the end the local algorithm outputs the
covering with the fewest rings that it can generate in this way.

1t is obvious from this description that the new local algorithm is of the
desired time complexity. Thus we only have to show that it generates an
optimal local covering. In view of Lemma 5.1 it is sufficient to show that
every optimal local covering OPT of » given points in a 2 -+ D interval J
contains four rings G,, G,, G,, G, such that those of the 7 points that are
not covered by these four rings lie between the two intervals of G, and
between the two intervals of G,. We first note that without loss of
generality OPT contains at most one ring whose right end is left of the
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center m of the considered 2 - D interval J (if there are several such rings
“flip over” all except the rightmost one; it is easy to see that all # points
remain covered). Analogously we can assume that there is in OPT at most
one ring whose left endpoint lies to the right of the center m.

Let G, be the leftmost ring in OPT whose right end is > m and let G,
be the rightmost ring in OPT whose left end is < m. Let G, (G,) be the
umque ring left of G, (ring of Gz) if it exists. Assume that y is one of the
given points in 1nterva1 J that is not covered by G,, G,, G,, G,. If vy lies
left of G,, then v is covered in OPT by a ring whose left endpoint lies left
of that of G,. By assumption this ring can only be G,. The case where v lies
to the rlght of G, is handled analogously. Flnally, since by construction
there is no“gap” between the right end of G, and the left end of G,, y can
only lie between the two intervals of G| or between the two intervals of G,.
The following lemma describes in detail phase 2 of the preceding algorithm.
We write S for the smallest interval that contains all points which lie
between the two intervals of G, and to the left of G,, T is the smallest
interval that contains all points which lie between the two intervals of G,.

LEMMA 5.1.  Let the ring size be fixed at (r,w). Let S and T be two
disjoint intervals on the line, both of length < 2r, with S lying left of T and
the distance between S and T bigger than w. Let ST be a set of i points in
S U T. Then the following Algorithm F computes a minimal cover of ST by
rings of size {r,w) in O(min r/w, n) steps.

ALGORITHM F. Always place the next ring in the leftmost of the
following two positions:

(i) where the left end of its left interval coincides with the leftmost
uncovered point of ST in S;

(ii) where the left end of its right interval coincides with the leftmost
uncovered point of ST in T.

Proof. We show by induction on the cardinality 7 of ST that Algorithm
F computes a minimal cover. Let OPT be an optimal covering of ST by
rings of size {r, w). Our assumption on § and T implies that if a ring in
OPT covers some point in T (S) with its left (right) interval, this interval
does not cover in addition a point in S (7). Further, its other interval
covers no point of ST. Thus we can “flip over” this other interval of the
ring to the opposite side without changing the cardinality of the covering
OPT. Therefore we can assume w.l.o.g. that the covering OPT is “normal,”
i.e., every ring in OPT covers with its left interval only points of S and with
its right interval only points of T.
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Let R, be the leftmost ring in the covering OPT and let R be the first
ring that is placed by algorithm F. We want to show that R covers every
point of ST that is covered by R,. If R, were positioned strictly to the
right of R, then OPT would not cover ST (using the assumption that OPT
is normal).

Thus we only have to consider the case where R, is positioned left of R
and R, covers some point p € N that is not covered by R. If p € §
then R, covers p with its left interval (since OPT is normal). Therefore p
lies left of the left interval of R, which contradicts the definition of R. If p
€ T we arrive at an analogous contradiction. Therefore in any case the set
ST of points in ST that are not covered by R is covered by the |OPT| — 1
rings of OPT — {R,}.

Together with the induction hypothesis this implies that algorithm F
covers ST with < |OPT| — 1 rings. Therefore algorithm F covers ST with
|OPT) rings.

For the time analysis we assume that the given 7 points have been
preprocessed as in Lemma 3.1 so that the placement of each ring requires
only a constant number of steps (the preprocessing itself requires only
O(7 log 71) steps, thus it does not affect the time bound of the constructed
1-approximation algorithm). Q.ED.

Remark 5.2. We refer to Hochbaum and Maass [4] for a more efficient
version of the previously described $-approximation algorithm that runs in
time O(min (n3, n? - r/w)). This saving of a factor of n* can be achieved by
noting that in phase 1 of the described algorithm for each considered
positioning of the rings G,, G, there are only constantly many possibilities
(instead of 7% many) that have to be considered for the positioning of the
rings Gl, G2 However, the analysis of these constantly many cases is quite
cumbersome because the optimal positioning of G,, G, interacts with the
optimal positioning of the remaining rings that are neither to the left of G,

nor to the right of G,.

Remark 5.3. The preceding efficient 3-approximation algorithm makes
use of the special structure of optimal coverings in a 2 D-interval. It is also
likely that for natural numbers / > 2 optimal coverings in /- D intervals
have similar properties that can be exploited for designing efficient optimal
algorithms for covering 7 points in a / - D interval. This would provide for
[ > 2 efficient (1//)-approximation algorithms for the global ring cover
problem. Also, one could design fast approximation algorithms for the local
covering problem in order to get efficient approximation algorithms for the
(global) ring cover problem. We suggest these approaches as topics for
further research.
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6. AN EFFICIENT e-APPROXIMATION SCHEME FOR r/w < 1/2

For rings with w > 2r, and only for these rings, there is an optimal
covering OPT of the given points which has the “right justified” property.
That is, each ring is placed in a rightmost position that still covers the
leftmost point, p, yet uncovered by the rings on its left or it is placed in the
rightmost position that covers point p while leaving no points uncovered in
the 2r inner disk of the ring. In the latter case the leftmost uncovered point
following the positioning of this ring is right to its rightmost border. More
formally, a covering OPT is said to have property (*) if for every ring R in
OPT:

(i) either R is positioned with its left end at the leftmost point p that
is not covered by another ring of OPT that is left of R;

(i) or the left endpoint of the right interval of R covers a point g to
the right of p and all points left of ¢ are already covered by R or rings left
of R (see Maass [11, Corollary 4.2)).

The positioning of a ring according to case (i) (Fig. 6) will generally leave
some uncovered points in the inner disk of length 2r. Precisely one more
ring will have to be placed in order to cover those points (since 2r < w).
Case (ii) will offer an advantage only if following the placement of a ring
R, according to case (ii), the gap of length 27 between the two intervals—the
inner disk of R,—does not contain any uncovered point. If otherwise is the
case then an additional ring R, needs to be placed to cover the uncovered
points in the inner disk of length 2r which together with ring R, cover an
uninterrupted interval of points up to its rightmost border. But then we
could have been better off using case (i) for R as this will only cover
additional points with the next ring R, compared to the positioning of
those two rings with R, according to case (ii).

The following quick e-approximation scheme for r/w < 1/2 makes use

of property (*).
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THEOREM 6.1. For r/w < 1/2 there is an e-approximation scheme that
covers n given points on the line in O(|1/€]?22*/¢1- n - log n) steps with
error ¢, for any given ¢ > 0.

Proof. Set [:=[1/¢]. By the shifting lemma (Lemma 2.1) it is sufficient
to give an algorithm that computes for m given points that lie in an interval
of length /- D in O(I - 22! - log m) steps an optimal covering. (Recall that
in computing a cover for a given shift S there are no more than n such
non-empty /- D-intervals that require covering. This implies at most n
applications of the O(/ - 2% - log m) local algorithm).

We first note that we need at most 2/ rings to cover compactly all the
intervals of length /- D (actually [/ - 2] - 2 rings are sufficient since each
interval of length 3 - D can be covered completely by two rings). The
algorithm attempts to place 2 - / rings in left-to-right order following this
scheme, but each time, before placing a new ring to cover the leftmost
uncovered point, it guesses which case, (i) or (ii) applies. There are 22"/
ways to guess a cover according to this scheme (though not all are feasible):
hence at most 22/ attempts will be made.

For each guess we position successively rings according to this guess. In
case (i) this is trivially done. In case (ii) we recall that the only advantage
offered by a positioning according to (ii) is when given the leftmost
uncovered point p, there is a gap or an open interval (/, j) of length > 2r
to the right of p with its left endpoint i at a distance < w from p (see Fig.
7). This allows p and i to be covered together by the left interval of the
currently positioned ring while leaving no uncovered points in the inner
disk of that ring. Among all such rings we shall choose the rightmost one.
(Note that i could be equal to p.) The algorithmic implementation of this
idea is straightforward: Among all gaps (i, j) of length > 2r we choose
the rightmost such gap with the property that the distance of i from p, d

is < w (see Fig. 8). We then inspect the distance d;
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then we place the ring with the leftend border of its right interval coinciding
with J.

If such gap does not exist or if the distance d;, > w + 2r then we place
the ring with its leftmost border on point p which is consistent with case
(1). In this event we may discard the current guess as inapplicable and
attempt another guess.

The procedure described calls for finding the farthest (rightmost) gap
from p with its left end at a distance < w from p, and for finding the next
(closest) uncovered point. This can be done using binary search (or even a
refined form of such search on which we shall not elaborate). Hence we
need O(log m) steps to compute the exact position of one such ring. We
assume here that suitable data structures are used for the positions of the
yet uncovered points and for the gaps of length > 2r between such points.
The run time for each guess is hence no more than O((2/) - log m) and the
desired result follows immediately. Q.E.D.

7. SUMMARY

In this paper we derive various new results for the ring cover problem by
exploiting the so-called shifting technique. The applicability of this tech-
nique can be generalized well beyond the ring cover problem. The technique
applies, for instance, to a variety of geometric covering and packing
problems with convex objects in any Euclidean space [2]. Such problems
include covering points in a d-dimensional Euclidean space by balls or
cubes or packing with such objects. In fact, this technique applies to any
covering and packing problem with convex objects; however, the irregular-
ity of the object—the ratio between the maximum and minimum diameter
—affects the running time of the polynomial approximation scheme. Such
applications of the shifting technique to strongly NP-complete problems
that arise in image processing and VLSI are described in [2].

The ring cover problem has been studied in this paper as a paradigm of
covering with nonconvex objects. There are numerous extensions and
generalizations of this problem that are still open. In the one-dimensional
case the ring problem can be viewed as covering with pairs of intervals. This
problem is a special case of covering with objects that consist of m > 2
indentical intervals. Another generalization is to the case where the pair (or
multiple) intervals of each nonconvex object are not of equal length.

It seems that our approach could be useful beyond the realm of geomet-
ric problems. Scheduling with intermittent schedules to cover all tasks is a
nongeometric problem for which our technique may prove applicable. As
all the problems mentioned so far are strongly NP-complete, the existence
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of a fast approximation scheme that solves such a problem is of particular
interest.

Finally, there is another wide family of covering problems where the

covering objects are not identical, and each has a cost associated with its
use in the cover. The objective is to find a minimum cost cover. Such
problems appear also in the context of the location—allocation problem,
and none of them have yet been resolved in terms of polynomial schemes.
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