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Hopfield nets in temporal coding
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Abstract. A theoretical model for analogue computation in networks of spiking neurons with
temporal coding is introduced and tested through simulations in GENESIS. It turns out that the
use of multiple synapses yields very noise robust mechanisms for analogue computations via
the timing of single spikes in networks of detailed compartmental neuron models.

In this way, one arrives at a method for emulating arbitrary Hopfield nets with spiking
neurons in temporal coding, yielding new models for associative recall of spatio-temporal firing
patterns. We also show that it suffices to store these patterns in the efficacies ofexcitatory
synapses.

A correspondinglayered architecture yields a refinement of the synfire-chain model that
can assume a fairly large set of different stable firing patterns for different inputs.

1. Introduction

Recent experimental results from neurophysiology have shown that in many biological
neural systems not only the firing rate, but also the spatio-temporal pattern of neuronal
firing carries important information.

Other recent experimental results indicate that it is in fact questionable whether
biological neural systems areable to carry out analogue computation with analogue variables
represented as firing rates. Due to ‘synaptic depression’ the amplitude of postsynaptic
potentials arising from a presynaptic neuronu tends to scale as 1/f wheref is the firing
rate ofu (see, e.g., Abbottet al 1997). Therefore both slowly firing neurons and rapidly
firing neuronsu inject roughly the same amount of current into a postsynaptic neuron during
a given time window. This suggests that both a McCulloch–Pitts neuron and a sigmoidal
neuron model overestimate the computational capability of a biological neuron for rate
coding.

In addition, it has been argued that in view of the rather low firing rates of cortical
neurons analogue computations in multi-layer neural systems with intermediate variables
represented as firing rates would be much too slow to achieve the experimentally observed
computation speed of concrete cortical neural systems (Rolls and Tovee 1994, Thorpe and
Imbert 1989, Perretet al 1982).

Temporal coding with single spikes has been suggested as an alternative neural code,
that would not be affected by synaptic depression. In addition, with this neural code one can
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356 W Maass and T Natschl¨ager

in principle achieve very high computation speed with biologically realistic low firing rates.
In temporal coding with single spikes one can encode analogue variables in the firing times
of neurons relative to the stimulus onset (Kjaeret al 1996), relative to some oscillation
(Hopfield 1995), or relative to the firing times of other neurons (O‘Keefe and Reece 1993,
Thorpe and Imbert 1989).

In this paper we explore models for associative memory in networks of spiking neurons
with the latter two types of temporal coding. In this regard our models differ from previous
models for associative memory in networks of spiking neurons, which were based on rate
coding (Franśen 1996, Simmenet al 1995, Ritzet al 1994, Gerstner and van Hemmen
1992, Lansner and Fransén 1992, Herzet al 1991). Through a rigorous mathematical result
and through simulations of compartmental neuron models in GENESIS we demonstrate a
computational mechanism that allows us to emulate any given Hopfield net with a network of
spiking neurons with temporal coding. This mechanism can be implemented in a surprisingly
noise robust way both with regard to some underlying background oscillation as in Hopfield
(1995) and in a self-excitatory manner without any external ‘clock’.

If one applies our method to a feedforward network instead of a recurrent net, one
arrives at a new version of the synfire chain, a model which was introduced in Abeles
(1991). This new version of the synfire chain can have a large set of different stable states
(‘memory patterns’), in contrast to the traditional synfire chain models that are based on just
two states (‘active’ and ‘inactive’). Furthermore, the occurrence of precisely timed firing
patterns in the cortex (see Abeleset al 1993) can be explained just as well with this new
version of the synfire chain as with the traditional model.

Apart from these specific results, this paper also addresses an important general
question regarding the modelling of neural computation, namely, to what extent are
mechanisms and results that have been demonstrated analytically for networks of relatively
simple mathematical models for leaky integrate-and-fire neurons also valid for networks of
substantially more complex compartmental neuron models?

Section 2 of this paper presents a theoretical result regarding the emulation of Hopfield
nets in networks of spiking neurons. In section 3 we discuss the results of our GENESIS
simulations of related networks of compartmental neuron models. Section 4 contains some
conclusions.

2. Theoretical result

In this section we outline the construction of a networkSH of spiking neurons which
approximates the computation of an arbitrary given Hopfield networkH. As a model for a
spiking neuron we take the common model of aleaky integrate-and-fire neuron with noise,
and the somewhat more generalspike response modelof Gerstner and van Hemmen (1992),
respectively. For details on the model see Maass (1997). The only specific assumption
needed for the construction ofSH in theorem 2.1 is that both the beginning of the rising
part of an EPSP and the beginning of the descending part of an IPSP can be described by
a linear function.

Theorem 2.1.LetH be an arbitrary given Hopfield net with graded response (as in Hopfield
1984) and synchronous update. We assume thatH consists ofn sigmoidal neuronsui for
i ∈ {1, . . . , n} with arbitrary weightswij ∈ R for i, j ∈ {1, . . . , n} and a piecewise linear
activation functionσ as indicated in figure 1. Then one can approximate any computation of
H by a recurrent networkSH of n spiking neurons (withO(1) auxiliary spiking neurons) in
temporal coding. An input, internal state, or output ofH of the form〈x1, . . . , xn〉 ∈ [−1, 1]n

N
et

w
or

k 
D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
T

ec
hn

is
ch

e 
U

ni
ve

rs
ity

 G
ra

z 
on

 0
7/

05
/1

0
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



Emulation of arbitrary Hopfield nets in temporal coding 357

Figure 1. Piecewise linear activation
function of the Hopfield netH with
graded response.

is represented inSH by temporal coding, i.e. by a firing pattern ofSH in which itsith neuron
fires at timek T − c x̃i , where|xi − x̃i | can be made arbitrarily small. The reference time
pointsk T for k = 0, 1, . . . are defined byO(1) periodically firing auxiliary neurons inSH.
Any fixed point ofH corresponds to a stable periodic firing pattern ofSH.

Proof. In SH we will have spiking neuronsv1, . . . , vn which simulate the output of the
sigmoidal neuronsu1, . . . , un in H through thetime at which they fire. We assume that
there exists a synapse from neuronvj to neuronvi for any i 6= j . The spiking neurons
v1, . . . , vn in SH fire periodically, for thekth time during the time interval [k T −c, k T +c],
k ∈ N. When the neuronsv1, . . . , vn in SH fire during thekth time interval at times
k T − c x̃i(k), i ∈ {1, . . . , n}, then this temporal firing pattern will correspond to an output
x(k) = 〈x1(k), . . . , xn(k)〉 ∈ [−1, 1]n of then sigmoidal neurons ofH after theirkth parallel
computation step. These values are updated inH according to the equation

xi(k + 1) = σ
( n∑
j=1

wij xj (k)

)
(2.1)

whereσ is the activation function ofH (see figure 1) andwi1, . . . , win are the weights of
ui in H. The vector〈x1(0), . . . , xn(0)〉 ∈ [−1, 1]n is the network input.

Thus to simulate the(k + 1)th parallel computation step ofH in SH, we need to make
sure that each spiking neuronvi fires at timeti(k + 1) = (k + 1) T − c x̃i(k + 1) with
|x̃i (k + 1)− xi(k + 1)| as small as possible.

We achieve this by exploiting a mechanism inSH for computing a weighted sum in
temporal coding which is described in Maass (1997). This simulation is based on the
observation that in the presence of some other excitation which moves the membrane
potential close to the firing threshold, individual EPSPs, IPSPs (or volleys of synchronized
PSPs) are able toshift the firing time of a neuron. This mechanism is particularly easy to
analyse if we work in a range where all PSPs can be approximated well by linear functions.
For this range one can show that the resulting firing time is linearly related to theweighted
sum of the firing times of the presynaptic neurons, with the weights corresponding to the
efficacies(‘strengths’) of the synapses involved.

To be precise, the firing timeti(k+1) of neuronvi during the simulation of the(k+1)th
parallel computation step ofH can be expressed as follows:

ti(k + 1) = k T + d + θ∑n
j=1 αij

−
∑n
j=1 αij (k T − tj (k))∑n

j=1 αij
(2.2)

Hereθ is the threshold of the spiking neuronvi , d the propagation delay (the time from the
generation of a spike at neuronsvj to the onset of the PSP at the soma at neuronvi) andαij
is the slope of the linear increasing (decreasing) section of the corresponding EPSP (IPSP)
at the soma ofvi . Equation (2.2) holds rigorously if neuronvi fires at a timeti(k + 1) so
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358 W Maass and T Natschl¨ager

that each postsynaptic potential from the previous round of firing ofv1, . . . , vn is at time
ti(k+ 1) in its initial linearly rising phase at the trigger zone ofvi (in the case of an EPSP)
or in its initial linearly declining phase (in the case of an IPSP).

The term
∑n
j=1 αij in the denominator of equation (2.2) normalizes the sum of the

effective weightsα′ij = αij /
∑n
j=1 αij in the weighted sum of the termsk T − tj (k) to 1. To

simulate networksH with weights that do not sum up to 1 one is forced to use an additional
neuronv0 in SH. If v0 fires at timeskT , k ∈ N, one can then satisfy equation (2.3) for the
next firing time ti(k + 1) of neuronvi . One setsT := d + θ/λ and one chooses values
αij for j = 0, . . . , n so that

∑n
j=0 αij = λ andαij = λwij , whereλ > 0 can be chosen

arbitrarily. Sincex̃j (k) is defined through the equationk T − tj (k) = c x̃j (k), one obtains

ti(k + 1) = (k + 1) T − c
n∑
j=1

wij x̃j (k). (2.3)

Hence the firing timeti(k + 1) = (k + 1)T − c x̃i(k + 1) of vi encodes the value
x̃i (k+1) =∑n

j=1wij x̃j (k) in temporal coding. In other words, according to equation (2.3)
neuronvi computes intemporalcoding a weighted sum of the valuesx̃j (k). The above only
holds for values of

∑n
j=1wij x̃j (k) in the linear range [−1, 1] of the activation functionσ . In

order to achieve the result thatvi fires for any〈x̃i (k), . . . , x̃n(k)〉 ∈ [−1, 1]n approximately
at time (k + 1)T − c σ (∑n

j=1wij x̃j (k)
)
, in the formal construction ofSH one can employ

some auxiliary neurons that prevent a firing ofvi during the intermediate time interval
(kT + c, (k + 1)T − c) and which make sure thatvi definitely fires once during the time
interval [(k + 1)T − c, (k + 1)T + c].

In our formal construction these auxiliary neurons inSH have an undesired side effect
on the firing timeti(k+ 1) if

∑n
j=1wij x̃j (k) ∈ [−1, 1] and the value of this sum is close to

−1 or+1. The resulting firing timeti(k+ 1) of vi in SH is shifted due the PSPs generated
by this auxiliary neuron. This is the reason why the computation ofH cannot be simulated
preciselyin SH. However, the amount of this shift can be made arbitrarily small. For further
details concerning these auxiliary neurons, as well as noise and refractory behaviour, the
reader is referred to Maass (1997).

3. Simulations with GENESIS

In the remainder of this paper we take the preceding theoretical construction as the
basis for a case study. We want to find out to what extent the mechanisms for
computations with temporal coding that have been verified theoretically for integrate-and-
fire neurons correspond to stable computational mechanisms for substantially more detailed
compartmental models of biological neurons simulated in GENESIS (Bower and Beeman
1995).

Surprisingly, it turns out that the most essential computational mechanism underlying the
proof of theorem 2.1 (and the construction of Maass (1997)) workseven betterin the more
detailed neuron model of GENESIS. The previously described computational mechanism
for computing a weighted sum

∑n
j=1wij xj (k) is theoretically sound as long as during each

wave of firing the range [0, 2c] of the differences in firing times of then presynaptic neurons
v1, . . . , vn is so small that there is a time point at which (despite their temporal differences)
the resulting postsynaptic potentials are at the soma of eachvi all in their initial linear
phase. However, since non-NMDA EPSPs rise very fast, the theory would suggest that
the length 2c of this interval would have to be chosen to be about 1 ms. This is so small
that one has to be concerned about the effect of various sources of temporal jitter on the
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Emulation of arbitrary Hopfield nets in temporal coding 359

Figure 2. Superposition of several non-NMDA EPSPs caused by
the firing of a single presynaptic neuron with multiple synapses.
The membrane voltage is measured at the dendrite (D) and at the
soma (S). Three cases are shown: (A) a single synapse, (B) three
synapses and (C) six synapses from the presynaptic neuron. In
all subsequent simulations we use three synapses, which results
in a time interval of 7 ms during which the superposition of these
EPSPs increases linearly.

precision of this temporal coding. Figure 2 shows that for GENESIS neurons the value 2c

can be chosen to be much larger.
One can extend this length by replacing each synapse between a presynaptic neuronvj

and vi by l > 1 synapses. In this way a single spike fromvj causes a superposition of
l EPSPs at the soma ofvi . This superposition may have a substantially longer increasing
phase if the signal pathways along thel synapses betweenvj and vi have a reasonable
difference in their total delays (time from generation of a spike at neuronvj to the onset
of the PSP at the soma at neuronvi). Besides the differences in propagation times in the
dendritic tree (Zadoret al 1995) the differences of the arrival times at various terminals of
the axonal tree also contribute to the diversity of the total delays (in our simulations we
assume a difference of 3.5 ms, see Manoret al (1991)). However, the simple models for
leaky integrate-and-fire neurons predict that the resulting rising phase of a superposition of
several EPSPs is quite ‘bumpy’, which limits its use for the here considered computational
mechanism. In simulations with GENESIS the nonlinearity of this rising phase is clearly
visible if one measures the resulting membrane voltages close to the synapses (see the curves
labelled ‘D’ in figure 2). However, at thesoma, where the shape of this superposition
becomesrelevant for the computational mechanismconsidered here, thisrising phaseof
the superposition of several EPSPs isalmost perfectly linear(see the curves labelled ‘S’
in figure 2). This observation allows us in our GENESIS simulations to stretch the length
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360 W Maass and T Natschl¨ager

2c of the interval for temporal coding through the use of multiple synapses to 2c = 4 ms
(figure 2(C) shows that a much larger value can be chosen if more than three synapses are
used and a difference of the delays of 10 ms is assumed).

Now we introduce a method for constructing for any given Hopfield netH a network
GH of biologically quite detailed spiking neurons so thatGH has an equally rich set of
attractors asH. Note that each attractor ofGH is a spatio-temporal firing pattern, whereas
an attractor (fixed point) inH has no temporal structure. Furthermore, we show that these
firing patterns ofGH in fact have attractor qualities: if one initiatesGH with a firing pattern
that differs from all of the stable firing patterns it moves to an attractor firing pattern within
a few firing periods.

The ‘blueprint’ for the construction ofGH is provided by the formal modelSH that we
have described in section 2. There are minor changes needed to move the construction of
SH into a parameter range that is biologically more realistic.

One detail of our case study concerns the simulation of thesaturatedsegments of the
activation functionσ (i.e. the required ‘nonlinearity’) of the given artificial neural netH.
Whereas auxiliary neurons are needed for that purpose in the theoretical construction of
theorem 2.1 (similarly to Maass (1997)), the natural form of EPSPs and IPSPs suggests
that these auxiliary neurons may be unnecessary in a practical context (see the discussion
in remark 6 of Maass (1997)). This conjecture is supported through all our simulations of
GH, where no extra mechanism forces a neuron to fire once during each firing wave.

Figure 3. Nine randomly chosen ‘memory patterns’ from{−1,+1}60.

For our GENESIS simulations we started out from a Hopfield netH with n = 60
neurons, whose weights were computed with the projection method (Hertzet al 1991) so
that nine randomly chosen vectors from{−1, 1}60 (see figure 3) are fixed points ofH.
We have simulated the networkSH of spiking neurons (which simulatesH according to
theorem 2.1) in GENESIS with a networkGH of 61 neurons. InGH each neuron is modelled
with 122 compartments, and there are three synapses between each pair of neurons (whose
delays differ by up to 3.5 ms).GH has the same architecture and the same weights (properly
scaled) asSH (30% of the weights were rounded to 0). Weights with negative values are
modelled by inhibitory synapses.

In the protocols of our simulations ofGH the bars on the left of the figures (‘i-
error’) indicate the difference between the firing times of thefirst wave of firing and the
closest memory pattern (both interpreted as vectors from [−1,+1]60 via temporal coding).
Correspondingly, the bars to the right (‘o-error’) indicate the difference between the firing
times of the last shown firing wave and the same memory pattern. In both cases the
non-firing of a neuron is treated like the firing of a neuron among the last in the firing
wave. This is justified by the observation that both scenarios reflect equivalent ways of
encoding the smallest possible analogue value ‘−1’ (see the discussions in Maass (1997)).
A neuronvj that firesvery late during a firing wave has as negligible an impact on the
firing times during the next firing wave asvj not firing at all. It is interesting to note that
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Emulation of arbitrary Hopfield nets in temporal coding 361

Figure 4. Membrane potential at the soma of neuron 5 in the simulation from figure 5 with
and without noise. The diagramwith noise reflects the additional internal noise underlyingall
our GENESIS simulations. We assume the existence of a random current at the soma of each
neuron (Gaussian distribution with a variance of 10−18 A2), and that each synapse fails with a
probability of 15%.

in all our simulation both types of encoding ‘−1’ are present. During the first few firing
waves ‘−1’ is encoded by a late firing, whereas after the network has reached an attracting
firing pattern with very high preference the neurons choose to encode a negative value close
to −1 by not firing at all. Thus a subsequent network is able to read out the result of the
computation ofGH in the more noise-robust form of arate code.

In the space just before ‘o-error’ in figures 5–10 inclusive we have marked with a
horizontal bar each neuroni of GH which doesnot satisfy the following property: neuron
i fires during the last firing waveif and only if the ith component of the memory pattern is
a ‘+1’. One can see that only relatively low ‘errors’ occur where a neuron does not satisfy
this property.

To investigate the noise robustness of our model two internal sources of noise are
considered (in addition to the noise by which the network inputs are perturbed): a noisy
membrane potential and failing synapses (see figure 4). These two types of noise underlie
all our simulations, which shows that our construction is robust against a substantial level
of noise.

The results of the simulation ofGH with a very noisy version of memory pattern 1 as
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362 W Maass and T Natschl¨ager

Figure 5. GENESIS simulation ofGH with a corrupted versionx of memory pattern 1 as input
(see text for details). The two lower diagrams show the firing times of the first 10 neurons
at a higher temporal resolution. The resulting effective difference between theinput vector
x ∈ [−1,+1]60 that is given toGH in temporal coding and memory pattern 1 is indicated on the
left (‘i-error’). For each neuroni an error bar of length in [0, 1] indicates the size of the deviation
between theith component ofx and theith component of memory pattern 1. The difference
between theoutput vectory ∈ [−1,+1]60 in the same temporal coding (with non-firing viewed
as an encoding of−1) and memory pattern 1 is indicated on the right (‘o-error’).

input is shown in figure 5. The corrupted inputx was constructed as follows from memory
pattern 1: a randomly chosen 15% of the components of memory pattern 1 were multiplied
with −1. On top of this, the value of each component ofx was moved by a random
value from [−0.4, 0.4]. This inputx was presented toGH in temporal coding, although
not precisely: a randomly chosen 10% of the neurons inGH were prevented from firing
(corresponding to an input value−1). Further diagrams (figures 8, 9 and 10 presenting
simulation results with all nine stored patterns shown in figure 3) show that in factall
arbitrarily chosen fixed points ofH can be associatively recalled byGH. Figures 5 and 10
show that after 10 firing waves each memory pattern is recalled in the ‘digitized’ output
code (firing/non-firing)without any error. Furthermore, even after five firing waves almost
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Emulation of arbitrary Hopfield nets in temporal coding 363

Figure 6. Here the input toGH is a linear combination of memory pattern 1 with factor 0.5
and of memory pattern 4 with factor 0.3, presented in temporal coding, with noise added as in
figure 5. The error bars to the left indicate the difference between the actual input and memory
pattern 1, which is the stronger component. The error bars to the right indicate the difference
between the output and memory pattern 1 in temporal coding.

no ‘digital’ errors in associative recall in terms of firing/non-firing occur (see figures 8
and 9).

It turns out that in contrast to the theoretical modelSH, no separate ‘oscillator’ is needed
in GH to define the reference timesk T for k = 0, 1, 2, . . . . Instead, neuron 0 ofGH, whose
firing times provide the reference timesk T , is a neuron like all the others, and it receives
inputs from all other neurons inGH through synapses with equal weight. It also has outgoing
synapses to all other neurons inGH. Thus its firing contributes to the triggering of the next
firing wave.

The networkGH is not only capable of an associative recall of memory patterns if the
input consists of a noisy version of one of the stored patterns. It also has the ability to
find the stronger component if the stimulus is a combination of two of the stored memory
patterns. This fact is demonstrated through simulations. The results are shown in figure 6.
This is in contrast to a pattern-recognition system comprised of spiking neurons proposed
by Hopfield. Hopfield’s construction (Hopfield 1995) is based on ‘grandmother neurons’
which each encode one spatio-temporal firing pattern through the locations of synapses on
their dendritic tree.

In GH we employ large transmission delays of 25 ms in order to avoid refractory effects.
This yields ‘oscillations’ ofGH of about 40 Hz, a value that is very common in biological
neural systems. In another version we have replaced the completely connected network
GH by a layered networkGsynfire

H , with a transmission delay of 5 ms between neurons in
successive layers. One may argue that this is a neurophysiologically realistic value (Manoret
al 1991). Gsynfire

H consists of three layers of 61 neurons each, with 70% of the connections
from one layer to the next (and from layer 3 back to layer 1) with a synaptic failure
probability of 15% as inGH , and weights corresponding to those inGH. Our simulations
(see figure 7) show that the layered network, which is closely related to a synfire chain
(Abeles 1991), has the same ability asGH for associative recall of any of the nine given
memory patterns. Furthermore, it needs just 50 ms for almost error-free recall. Its firing
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364 W Maass and T Natschl¨ager

Figure 7. Simulation ofGsynfire
H for the same input as in figure 5. The firing behaviour is plotted

separately for each of the three layers ofGsynfire
H , with error bars indicating deviations from

memory pattern 1 in its first and last firing wave. Thus the error reduction achieved during the
first two firing rounds can be seen in the three plots of the ‘i-error’ on the left.

behaviour is consistent with the experimental data from Abeleset al (1993), just as the
original model of a synfire chain. One could just as well work with a purely feedforward
synfire chain. In fact our simulations show that a feedforward synfire chain with three to
five layers would suffice for associative recall of a stored pattern by the synfire chain.

In GH andGsynfire
H we modelled each negative weightwij from the networkH through

separate inhibitory synapses. Therefore also the precise timing of IPSPs of the last wave
of firing becomes relevant to the next firing timeti(k + 1) of neuron i. A closer look
at the structure of the inhibitory pathways found in many biological neural systems may
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Emulation of arbitrary Hopfield nets in temporal coding 365

Figure 8. Simulations of the networkGH as in figure 5, with corrupted versions of memory
patterns 1, 2 and 3 as input. Note that almost error-free recall occurs already after five firing
waves.

suggest that inhibition is not used in such a precise manner. One may argue that the role of
inhibition is to regulate the overall activity in a neural system. To obtain results which are
consistent with this point of view we investigate a third implementation of the networkSH in
GENESIS. In this network̃GH positive weightswij from the networkH are represented by
excitatory synapses as inGH, but negative weightswij are not modelled explicitly. Instead,
an inhibitory bias (equal for all neuronsi ∈ {1, . . . , n} in G̃H) is applied. This inhibition is
produced by synapses formed between the additional neuron 0 and each neuroni. Thus all
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Figure 9. Simulations of the networkGH as in figure 5, with corrupted versions of memory
patterns 4, 5 and 6 as input.

information about the weightswij of the simulated Hopfield netH is stored exclusively in
the efficacies ofexcitatory synapses inG̃H.

The construction ofG̃H is based on a common heuristic. We setw̃ij = wij if wij > 0,
w̃ij = 0 if wij < 0, where thewij are the weights of a Hopfield netH. We assume
that the weightswij were chosen in order to store inH p patternsξ1, . . . , ξp either with
the standard Hebbian learning rule (Hopfield 1982) or the projection method (Hertzet al
1991). We consider the distribution of valueshµi =

∑n
j=1 w̃ij ξ

µ

j , whereξµj denotes thej th
component ofξµ. This distribution typically has two clusters: one with larger values ofh

µ

i
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Figure 10. Simulations of the networkGH as in figure 5, with corrupted versions of memory
patterns 7, 8 and 9 as input.

(for 〈i, µ〉 with ξ
µ

i = +1) and one with smaller values ofhµi (for 〈i, µ〉 with ξ
µ

i = −1).
Therefore one can choose a biasb such thathµi + b > 0 for most〈i, µ〉 with ξµi = 1, and
h
µ

i + b < 0 for most〈i, µ〉 with ξµi = −1. In other words, through a careful choice of the
biasb one can repair the damage resulting from the replacement of the weightswij by w̃ij
(see subsection 7.5.4 of Peretto (1992)).

Through simulations in GENESIS we show thatG̃H does indeed have the capability of
associative recall of stored patterns. For these simulations we started out from a Hopfield
net H with n = 60 neurons whose weights were computed with the standard Hebbian
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Figure 11. Simulations of the networkG̃H with patterns stored exclusively in excitatory
synapses. The simulation is carried out as in figure 5, with corrupted versions of memory
patterns 4, 5 and 6 as input.

learning rule (Hopfield 1982) so that five of the nine vectors of figure 3 are fixed points
of H. We have chosen for these simulations the Hebb rule instead of the projection rule
for the construction ofH in order to demonstrate that this makes no difference for our
simulations with spiking neurons. Negative weightswij are set to 0. The common value of
the efficacies of the inhibitory synapses was primarily chosen according to the heuristic for
the choice of the biasb we have described above. However, it was necessary to fine-tune
this common value to achieve the desired behaviour ofG̃H. Figures 11 and 12 show the
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Figure 12. Simulations of the networkG̃H with patterns stored exclusively in excitatory
synapses. The simulation is carried out as in figure 5, with corrupted versions of memory
patterns 7 and 8 as input.

protocols of the simulations of̃GH with noisy versions of the five stored memory patterns
(i.e. patterns 4, 5, 6, 7 and 8 of figure 3) as inputs. These results clearly demonstrate that
G̃H is able to associatively recall all stored memory patterns. In these simulations the same
internal noise as in all previous simulations is present.

One can also extend the networkG̃H to a multilayer networkG̃ synfire
H just as described

above forGsynfire
H . Figures 11 and 12 suggest that five layers would suffice to provide

almost error-free recall. The network̃G synfire
H now involves only excitatory synapses and

a ‘global’ inhibition. Therefore the construction of̃G synfire
H is more closely related to the

original version of a synfire chain asGsynfire
H . On the other handG̃ synfire

H has the same
qualitative behaviour asGsynfire

H . In particular, it can recall many different stored firing
patterns. However, we found that the number of memory patterns which can be stored in
G̃ synfire
H is slightly smaller than forGsynfire

H .

4. Conclusions

We have exhibited a new way of simulating Hopfield nets with graded response by recurrent
networks of spiking neurons with temporal coding. The resulting networks of spiking
neurons carry out their computation very fast, even with biologically realistic low firing
rates.
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We have first demonstrated this simulation method through a rigorous theoretical result.
We have then chosen the resulting networks as a basis for a case study, where we check
the essential computational mechanisms of a common simplified theoretical model through
simulations in GENESIS. It turns out that our construction method yields surprisingly
noise-robust mechanisms for analogue computations by compartmental neuron models with
temporal coding. In particular the dynamic range that is available for temporal coding can
be made quite large by using multiple synapses between neurons. In this way one can work
in a range where the temporal coding scheme is not seriously affected by realistic values
of temporal jitter in firing times.

Our simulations in GENESIS show that one can in fact simulate an arbitrarily given
Hopfield net through a network of compartmental neuron models with temporal coding. The
resulting network has even under the influence of rather realistic amounts of internal noise
a rich set of different spatio-temporal firing patterns as attractors. These attractors mimic
the set of attractors of the given Hopfield net.

The layered version of the resulting network of spiking neurons provides a refinement
of the synfire-chain model (Abeles 1991). This refined version of a synfire chain overcomes
one of the essential bottlenecks of the original synfire chain model: its low storage capacity.
Whereas a synfire chain has only two states (active and inactive), the layered networks
considered here (with a similar architecture, but a more complex weight-assignment) exhibit
a fairly large reservoir of different stable firing patterns.

We show that this can even be achieved by storing all information about these ‘memory
patterns’ in the efficacies ofexcitatorysynapses. To the best of our knowledge all arguments
that support the existence of synfire chains in higher cortical areas (on the basis of the
consistency of their firing pattern with recorded data (Abeleset al 1993)) also support the
existence of our refined version in the same biological neural system.
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