Unsupervised Learning of Visual Object Categories

Michael Pfeiffer
pfeiffer@igi.tugraz.at
References

• M. Weber1, M. Welling1, P. Perona1 (2000)
 \textit{Unsupervised Learning of Models for Recognition}

• Li Fei-Fei1, R. Fergus2, P. Perona1 (2003)
 \textit{A Bayesian Approach to Unsupervised One-Shot Learning of Object Categories}

• (1 CalTech, 2 Oxford)
Which image shows a face / car / …?
Visual Object Category Recognition

- Easy for humans
- Very difficult for machines
- Large variability inside one category
To make it even more difficult ...

- **Unsupervised**
- No help from human supervisor
- No labelling
- No segmentation
- No alignment
Topics

- Constellation Model
- Feature Selection
- Model Learning (EM Algorithm)
- Results, Comparison

- One-shot Category Learning
Constellation Model (Burl, et.al.)

- **Object**: Random constellation of Parts

- **Object class**: Joint pdf on Shape and Appearance

Shape / Geometry

Part Appearance
Strength of Constellation Model

- Can model Classes with strict geometric rules (e.g. faces)
- Can also model Classes where appearance is the main criteria (e.g. spotted cats)
Recognition

- Detect parts of the image
- Form likely hypotheses
- Calculate category likelihood

Training

- Decide on key parts of object
- Select those parts in training images
- Estimate joint pdf
Object Model

- Object is a collection of parts
- Parts in an image come from
 - Foreground (target object)
 - Background (clutter or false detections)
- Information about parts:
 - Location
 - Part type
Probabilistic Model

- $p(X^o, x^m, h) = p(X^o, x^m, h, n, b)$

- X^o: "matrix" of positions of parts from one image (observable)
- x^m: position of unobserved parts (hidden)
- h: Hypothesis: which parts of X^o belong to the foreground (hidden)
- n: Number of background candidates (dependent)
- b: Which parts were detected (dependent)
Bayesian Decomposition

\[p(X^o, x^m, h, n, b) = \]
\[p(X^o, x^m|h, n) \cdot p(h|n, b) \cdot p(n) \cdot p(b) \]

- We assume independence between foreground and background \((p(n)\) and \(p(b))\)
Models of PDF factors (1)

- $p(n)$: Number of background part-detections

- M_t: avg. Number of background (bg) detections of type t per image

- Ideas:
 - Independence between bg parts
 - Bg parts can arise at every position with same probability

$$p(n) = \prod_{t=1}^{T} \frac{1}{n_t!} (M_t)^{n_t} e^{-M_t}$$

Poisson Distribution
Models of PDF factors (2)

- $p(b) : 2^F$ values for F features
 - b: Which parts have been detected

- Explicit table of 2^F joint probabilities

- If F is large: F independent prob.
 - Drawback: no modelling of simultaneous occlusions
Models of PDF factors (3)

- $p(h \mid n, b)$
 - How likely is a hypothesis h for given n and b?
 - n and b are dependent on h

\Rightarrow Uniform distribution for all consistent hypotheses, 0 for inconsistent
Models of PDF factors (4)

- $p(X^o, x^m | h, n) = p_{fg}(z) \cdot p_{bg}(x_{bg})$

- $z = (x^o x^m)$: Coordinates of observed and missing foreground detections

- x_{bg}: Coordinates of all background detections

- **Assumption**: foreground detections are independent of the background
Models of PDF factors (5)

- $p_{fg}(z)$: Foreground positions
 - Joint Gaussian with mean μ and covariance matrix Σ

- Translation invariant: Describe part positions relative to one reference part
Models of PDF factors (6)

- p_{bg}: positions of all background detections

\[
p_{bg}(x_{bg}) = \prod_{t=1}^{T} \frac{1}{A^{n_t}}
\]

- Uniform distribution over the whole image of Area A
Recognition

• Decide between \textit{object present} (Class C_1) and \textit{object absent} (Class C_2)

\[
\frac{p(C_1 \mid X^o)}{p(C_0 \mid X^o)} \propto \sum_h p(X^o, h \mid C_1) / p(X^o, h_0 \mid C_0)
\]

• Choose class with \textit{highest a posteriori probability} from observed X^o
• h_0: Null hypothesis: everything is bg noise
• \textit{Localization} is also possible!
Topics

• Constellation Model
• Feature Selection
• Model Learning (EM Algorithm)
• Results, Comparison
• One-shot Category Learning
Part selection

- Selecting parts that make up the model is closely related to finding parts for recognition

1. Finding Points of Interest
2. Vector quantization
Interest Operators

- Förstner operator
- Kadir-Brady operator
- Well-known results from computer vision

- Detect
 - Corner points
 - Intersection of lines
 - Centers of circular patterns

- Returns ~150 parts per image
 - May come from background
Vector Quantization (1)

- > 10,000 parts for 100 training images
- *k*-means clustering of image patches
 \[\rightarrow \sim 100 \text{ patterns} \]
- Pattern is average of all images in cluster
Vector Quantization (2)

- Remove clusters with < 10 patterns:
 - pattern does not appear in significant number of training images

- Remove patterns that are similar to others after 1-2 pixel shift

- Calculate PCA of image patch
 - precalculated PCA basis
Result of Vector Quantization

- **Faces**
 - Eyes, hairline, Mouth can be recognized

- **Cars**
 - high-pass filtered
 - Corners and lines result from huge clusters
Topics

- Constellation Model
- Feature Selection
- Model Learning (EM Algorithm)
- Results, Comparison
- One-shot Category Learning
Two steps of Model Learning

• Model Configuration
 - How many parts make up the model?
 - Greedy search: Add one part and look if it improves the model

• Estimate hidden Model Parameters
 - EM Algorithm
The EM Algorithm (1)

• **Expectation Maximization**
• Find a *Maximum Likelihood Hypothesis* for incomplete-data problems

- Likelihood:
 \[
 L(\Theta \mid X) = \prod_{i=1}^{N} p(x_i \mid \Theta)
 \]

- Find the most likely parameter vector \(\Theta \) for (complete) observation \(X \)
- What if \(X = (O, H) \) and only \(O \) is known?
The EM Algorithm (2)

• \(p(O, H | \Theta) = p(H | O, \Theta) \cdot p(O | \Theta) \)

• Likelihood \(L(\Theta | O, H) = p(O, H | \Theta) \) is a function of random variable \(H \)

• Define

\[
Q(\Theta, \Theta^{i-1}) = E[\log p(O, H | \Theta) | O, \Theta^{i-1}]
\]

- Conditional expectation of log-likelihood depending on constants \(O \) and \(\Theta^{i-1} \)
The EM Algorithm (3)

- **E – Step**
 - Calculate $Q(\Theta \mid \Theta^{i-1})$ using the current hypothesis Θ^{i-1} and the observation O to model the distribution of H

- **M – Step**
 - Find parameter vector Θ^i to maximize $Q(\Theta^i, \Theta^{i-1})$

- Repeat until convergence
 - Guaranteed to converge to local maximum
Hidden Parameters for This Model

- μ: Mean of foreground part coordinates
- Σ: Covariance matrix of foreground detection coordinates
- $p(b)$: Occlusion statistics (Table)
- M: Number of background detections

Observation: X_i^o coordinates of detections in images
Log-Likelihood Maximization

- Use earlier decomposition of probabilistic model in 4 parts
- Decompose Q into 4 parts
 - For every hidden parameter, only one part is dependent on it: maximize only this one!
 - Easy derivation of update rules (M-step)
 - Set derivation w.r.t. hidden parameter zero and calculate maximum point
 - Needed statistics calculated in E-step

- Not shown here in detail
Topics

• Constellation Model
• Feature Selection
• Model Learning (EM Algorithm)
• Results, Comparison

• One-shot Category Learning
Experiments (1)

• Two test sets
 – Faces
 – Rear views of cars

• 200 images showing the target
• 200 background images
• Random test and training set
Experiments (2)

- **Measure of success:**
 - **ROC**: Receiver Operating Characteristics
 - X-Axis: False positives / Total Negatives
 - Y-Axis: True positives / Total Positives

- **Area under curve:**
 - Larger area means: smaller classification error
 (good recall, good precision)
Experiments (3)

• Number of parts: 2 – 5
• 100 learning runs for each configuration

• Complexity:
 - EM converges in 100 iterations
 • 10s for 2 parts, 2 min for 5 parts
 • In total: Several hours
 - Detection: less than 1 second in Matlab
Results (1)

- 93.5% of all faces
- 86.5% of all cars correctly classified

Ideal number of parts visible
- 4 for faces
- 5 or more for cars
Results (2)

- Appearance of parts in best performing models
- Intuition not always correct
 - E.g. hairline more important than nose
 - For cars: often shadow below car is important, not tyres
Results (3)

- Examples of correctly and incorrectly classified images
Related Work

 Object Class Recognition by Unsupervised Scale-Invariant Learning

• Straightforward extension of this paper
• Even better results through scale invariance
• More sophisticated feature detector (Kadir and Brady)
Characteristics of Classes
Topics

• Constellation Model
• Feature Selection
• Model Learning (EM Algorithm)
• Results, Comparison

• One-shot Category Learning
One-shot learning

Introducing the OCELOT
Can you spot the ocelot?
Biological Interpretation

- Humans can recognize between 5000 and 30000 object categories
- Humans are very quick at learning new object categories
- We take advantage of prior knowledge about other object categories
Bayesian Framework

- Prior information about objects modelled by prior pdf
- Through a new observation learn a posterior pdf for object recognition
- Priors can be learned from unrelated object categories
Basic idea

- Learn a new object class from 1-5 new training images (unsupervised)
- Builds upon same framework as before
- Train prior on three categories with hundreds of training images
- Learn new category from 1-5 images (leave-one-out)
Results: Face Class

- General information alone is not enough
- Algorithm performs slightly worse than other methods
- Still good performance: 85-92% recognition
- Similar results for other categories
- Huge speed advantage over other methods
 - 3-5 sec per category
Summary

• Using Bayesian learning framework, it is possible to learn new object categories with very few training examples
• Prior information comes from previously learned categories
• Suitable for real-time training
Future Work

• Learn a larger number of categories
• How does prior knowledge improve with number of known categories?
• Use more advanced stochastic model
Thank you!